TY - GEN
T1 - Fundamental properties of on-off transmission scheme for wiretap channels
AU - Yan, Shihao
AU - Yang, Nan
AU - Yuan, Jinhong
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/11/30
Y1 - 2015/11/30
N2 - This work reveals some fundamental properties of an on-off transmission (OOT) scheme, in which a transmitter sends signals occasionally as per the capacity of the main channel in order to achieve physical layer security. To this end, we first identify the widely used hybrid secrecy outage probability as a function of the transmission probability and the conditional secrecy outage probability of the OOT scheme. This indicates, for the first time, that the hybrid secrecy outage probability can be achieved by the OOT scheme. We then derive a lower bound on the conditional secrecy outage probability of the OOT scheme in case of transmission, which is solely determined by the average signal-to-noise ratios (SNRs) of the main channel and eavesdropper's channel. Finally, we re-investigate the OOT scheme within an absolutely completely passive eavesdropping scenario, in which even the average SNR of the eavesdropper's channel is not required. Specifically, we derive an easy-evaluated expression for the average conditional secrecy outage probability of the OOT scheme by adopting an annulus threat model.
AB - This work reveals some fundamental properties of an on-off transmission (OOT) scheme, in which a transmitter sends signals occasionally as per the capacity of the main channel in order to achieve physical layer security. To this end, we first identify the widely used hybrid secrecy outage probability as a function of the transmission probability and the conditional secrecy outage probability of the OOT scheme. This indicates, for the first time, that the hybrid secrecy outage probability can be achieved by the OOT scheme. We then derive a lower bound on the conditional secrecy outage probability of the OOT scheme in case of transmission, which is solely determined by the average signal-to-noise ratios (SNRs) of the main channel and eavesdropper's channel. Finally, we re-investigate the OOT scheme within an absolutely completely passive eavesdropping scenario, in which even the average SNR of the eavesdropper's channel is not required. Specifically, we derive an easy-evaluated expression for the average conditional secrecy outage probability of the OOT scheme by adopting an annulus threat model.
UR - http://www.scopus.com/inward/record.url?scp=84975686377&partnerID=8YFLogxK
U2 - 10.1109/WCSP.2015.7341143
DO - 10.1109/WCSP.2015.7341143
M3 - Conference contribution
T3 - 2015 International Conference on Wireless Communications and Signal Processing, WCSP 2015
BT - 2015 International Conference on Wireless Communications and Signal Processing, WCSP 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - International Conference on Wireless Communications and Signal Processing, WCSP 2015
Y2 - 15 October 2015 through 17 October 2015
ER -