Fundamental properties of stars using asteroseismology from Kepler and CoRoT and interferometry from the CHARA Array

D. Huber*, M. J. Ireland, T. R. Bedding, I. M. Brandão, L. Piau, V. Maestro, T. R. White, H. Bruntt, L. Casagrande, J. Molenda-Zakowicz, V. Silva Aguirre, S. G. Sousa, T. Barclay, C. J. Burke, W. J. Chaplin, J. Christensen-Dalsgaard, M. S. Cunha, J. De Ridder, C. D. Farrington, A. FrascaR. A. García, R. L. Gilliland, P. J. Goldfinger, S. Hekker, S. D. Kawaler, H. Kjeldsen, H. A. McAlister, T. S. Metcalfe, A. Miglio, M. J.P.F.G. Monteiro, M. H. Pinsonneault, G. H. Schaefer, D. Stello, M. C. Stumpe, J. Sturmann, L. Sturmann, T. A. Ten Brummelaar, M. J. Thompson, N. Turner, K. Uytterhoeven

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    180 Citations (Scopus)

    Abstract

    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes, and high-resolution spectroscopy, we derive a full set of near-model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (νmax) and the large frequency separation (Δν). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to ≲ 4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T eff = 4600-6200 K of -22 ± 32 K (with a scatter of 97K) and -58 ± 31 K (with a scatter of 93K), respectively. Finally, we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modeling of individual oscillation frequencies.

    Original languageEnglish
    Article number32
    JournalAstrophysical Journal
    Volume760
    Issue number1
    DOIs
    Publication statusPublished - 20 Nov 2012

    Fingerprint

    Dive into the research topics of 'Fundamental properties of stars using asteroseismology from Kepler and CoRoT and interferometry from the CHARA Array'. Together they form a unique fingerprint.

    Cite this