TY - JOUR
T1 - General analysis of direct dark matter detection
T2 - From microphysics to observational signatures
AU - Dent, James B.
AU - Krauss, Lawrence M.
AU - Newstead, Jayden L.
AU - Sabharwal, Subir
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/9/14
Y1 - 2015/9/14
N2 - Beginning with a set of simplified models for spin-0, spin-12, and spin-1 dark matter candidates, we derive the full set of nonrelativistic operators and nuclear matrix elements relevant for direct detection of dark matter and use these to calculate rates and recoil spectra for scattering on various target nuclei. This allows us to explore what high energy physics constraints might be obtainable from direct detection experiments, what degeneracies exist, which operators are ubiquitous, and which are unlikely or subdominant. We find that there are operators which are common to all spins as well operators which are unique to spin-12 and spin-1 and elucidate two new operators which have not been previously considered. In addition we demonstrate how recoil energy spectra can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a complete road map for taking generic fundamental dark matter theories and calculating rates in direct detection experiments. This provides a useful guide for experimentalists designing experiments and theorists developing new dark matter models.
AB - Beginning with a set of simplified models for spin-0, spin-12, and spin-1 dark matter candidates, we derive the full set of nonrelativistic operators and nuclear matrix elements relevant for direct detection of dark matter and use these to calculate rates and recoil spectra for scattering on various target nuclei. This allows us to explore what high energy physics constraints might be obtainable from direct detection experiments, what degeneracies exist, which operators are ubiquitous, and which are unlikely or subdominant. We find that there are operators which are common to all spins as well operators which are unique to spin-12 and spin-1 and elucidate two new operators which have not been previously considered. In addition we demonstrate how recoil energy spectra can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a complete road map for taking generic fundamental dark matter theories and calculating rates in direct detection experiments. This provides a useful guide for experimentalists designing experiments and theorists developing new dark matter models.
UR - http://www.scopus.com/inward/record.url?scp=84943613055&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.92.063515
DO - 10.1103/PhysRevD.92.063515
M3 - Article
SN - 1550-7998
VL - 92
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 6
M1 - 063515
ER -