Generation of white-light optical vortices through four-wave mixing

P. Hansinger*, G. Maleshkov, I. Garanovich, D. Skryabin, D. N. Neshev, Yu S. Kivshar, A. Dreischuh, G. G. Paulus

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Citation (Scopus)

    Abstract

    Optical vortices (OVs) are singular optical beams with a spiral phase dislocation in their wavefront. When two pump beams at the frequencies 1 and 2 interact in a Kerr-type nonlinear medium, the degenerate four-wave mixing (FWM) process results in the generation of new distinct sum and difference frequency components at the output. Importantly, the FWM process is expected to preserve the topological charge of the OVs, and thus it can be employed for the generation of white-light vortices, in contrast to the vortex propagation in a Raman nonlinear medium [1]. However, as the FWM process is accompanied by noticeable nonlinear instabilities due to self- and cross-phase modulation, the phase information in the newly generated frequency components may be destroyed [2]. Therefore, it is important to reveal the possible regimes where the FWM process will dominate nonlinear instabilities, leading to the stable generation of white-light optical vortices.

    Original languageEnglish
    Title of host publication2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
    DOIs
    Publication statusPublished - 2011
    Event2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 - Munich, Germany
    Duration: 22 May 201126 May 2011

    Publication series

    Name2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011

    Conference

    Conference2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
    Country/TerritoryGermany
    CityMunich
    Period22/05/1126/05/11

    Fingerprint

    Dive into the research topics of 'Generation of white-light optical vortices through four-wave mixing'. Together they form a unique fingerprint.

    Cite this