TY - JOUR
T1 - Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis
AU - Chourey, P. S.
AU - Taliercio, E. W.
AU - Carlson, S. J.
AU - Ruan, Y. L.
PY - 1998
Y1 - 1998
N2 - In maize, two paralogous genes, Sh1 and Sus1, encode two biochemically similar isozymes of sucrose synthase, SS1 and SS2, respectively. Previous studies have attributed the mild starch deficiency of the shrunken1 (sh1) endosperm to the loss of the SS1 isozyme in the mutant. Here we describe the first mutation in the sucrose synthase1 (Sus1) gene, sus1-1, and the isolation of a double recessive genotype, sh1 sus1-1. Combined data from diverse studies, including Northern and Western analyses, RT-PCR and genomic PCR, cloning and sequencing data for the 3@? region, show that the mutant sus1-1 gene has a complex pattern of expression, albeit at much reduced levels as compared to the Sus1 gene. Endosperm sucrose synthase activity in sh1 sus1-1 was barely 0.5% of the total activity in the Sh1 Sus1 genotype. Significantly, comparative analyses of Sh1 Sus1, sh1 Sus1 and sh1 sus1-1 genotypes have, for the first time, allowed us to dissect the relative contributions of each isozyme to endosperm development. Starch contents in endosperm of the three related genotypes were 100, 78 and 53%, respectively. Anatomical analyses, which confirmed the previously described early cell degeneration phenotype unique to the sh1 Sus1 endosperm, revealed no detectable difference between the two sh1 genotypes. We conclude that the SS1 isozyme plays the dominant role in providing the substrate for cellulose biosynthesis, whereas the SS2 protein is needed mainly for generating precursors for starch biosynthesis.
AB - In maize, two paralogous genes, Sh1 and Sus1, encode two biochemically similar isozymes of sucrose synthase, SS1 and SS2, respectively. Previous studies have attributed the mild starch deficiency of the shrunken1 (sh1) endosperm to the loss of the SS1 isozyme in the mutant. Here we describe the first mutation in the sucrose synthase1 (Sus1) gene, sus1-1, and the isolation of a double recessive genotype, sh1 sus1-1. Combined data from diverse studies, including Northern and Western analyses, RT-PCR and genomic PCR, cloning and sequencing data for the 3@? region, show that the mutant sus1-1 gene has a complex pattern of expression, albeit at much reduced levels as compared to the Sus1 gene. Endosperm sucrose synthase activity in sh1 sus1-1 was barely 0.5% of the total activity in the Sh1 Sus1 genotype. Significantly, comparative analyses of Sh1 Sus1, sh1 Sus1 and sh1 sus1-1 genotypes have, for the first time, allowed us to dissect the relative contributions of each isozyme to endosperm development. Starch contents in endosperm of the three related genotypes were 100, 78 and 53%, respectively. Anatomical analyses, which confirmed the previously described early cell degeneration phenotype unique to the sh1 Sus1 endosperm, revealed no detectable difference between the two sh1 genotypes. We conclude that the SS1 isozyme plays the dominant role in providing the substrate for cellulose biosynthesis, whereas the SS2 protein is needed mainly for generating precursors for starch biosynthesis.
KW - Cellulose biosynthesis
KW - Isozymes
KW - Starch biosynthesis
KW - Sucrose synthase
KW - Zea mays
UR - http://www.scopus.com/inward/record.url?scp=0031706068&partnerID=8YFLogxK
U2 - 10.1007/s004380050792
DO - 10.1007/s004380050792
M3 - Article
SN - 0026-8925
VL - 259
SP - 88
EP - 96
JO - Molecular and General Genetics
JF - Molecular and General Genetics
IS - 1
ER -