TY - JOUR
T1 - Genetic manipulation of key photosynthetic enzymes in the C4 plant Flaveria bidentis
AU - Furbank, Robert T.
AU - Chitty, Julie A.
AU - Jenkins, Colin L.D.
AU - Taylor, William C.
AU - Trevanion, Stephen J.
AU - Von Caemmere, Susanne
AU - Ashton, Anthony R.
PY - 1997
Y1 - 1997
N2 - The NADP-malic enzyme type C4 dicot Flaveria bidentis (L.) Kuntze was transformed with antisense and cosense gene constructs that resulted in specific decreases in single photosynthetic enzymes. The enzymes targeted were ribulose-1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39] (Rubisco), pyruvate, Pi dikinase [EC 2.7.9.1] (PPDK) and NADP malate dehydrogenase [EC 1.1.1.82] (NADP-MDH). These enzymes were chosen as targets because they have low activity compared to photosynthetic rates (Rubisco), are subject to complex covalent regulation (NADP-MDH), or both (PPDK). T1 progeny of a number of lines of these transformants were examined for the effects of these gene constructs on enzyme levels and photosynthetic performance. Rubisco antisense transformants expressing between 15 and 100% of wild-type enzyme activity were obtained. Pyruvate, Pi dikinase antisense lines were obtained with 40-100% wild-type levels. NADP malate dehydrogenase sense constructs caused a co-suppression of enzyme activity with some lines containing less than 2% of wild-type activity. Under saturating illumination, the control coefficients for these enzymes were determined to be up to 0.7 for Rubisco, 0.2-0.3 for PPDK and effectively zero for NADP-MDH. The implications of these observations for the regulation of photosynthetic flux and metabolism in C4 plants and the role of regulation by covalent modification are discussed.
AB - The NADP-malic enzyme type C4 dicot Flaveria bidentis (L.) Kuntze was transformed with antisense and cosense gene constructs that resulted in specific decreases in single photosynthetic enzymes. The enzymes targeted were ribulose-1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39] (Rubisco), pyruvate, Pi dikinase [EC 2.7.9.1] (PPDK) and NADP malate dehydrogenase [EC 1.1.1.82] (NADP-MDH). These enzymes were chosen as targets because they have low activity compared to photosynthetic rates (Rubisco), are subject to complex covalent regulation (NADP-MDH), or both (PPDK). T1 progeny of a number of lines of these transformants were examined for the effects of these gene constructs on enzyme levels and photosynthetic performance. Rubisco antisense transformants expressing between 15 and 100% of wild-type enzyme activity were obtained. Pyruvate, Pi dikinase antisense lines were obtained with 40-100% wild-type levels. NADP malate dehydrogenase sense constructs caused a co-suppression of enzyme activity with some lines containing less than 2% of wild-type activity. Under saturating illumination, the control coefficients for these enzymes were determined to be up to 0.7 for Rubisco, 0.2-0.3 for PPDK and effectively zero for NADP-MDH. The implications of these observations for the regulation of photosynthetic flux and metabolism in C4 plants and the role of regulation by covalent modification are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0030667053&partnerID=8YFLogxK
U2 - 10.1071/PP97028
DO - 10.1071/PP97028
M3 - Article
SN - 0310-7841
VL - 24
SP - 477
EP - 485
JO - Australian Journal of Plant Physiology
JF - Australian Journal of Plant Physiology
IS - 4
ER -