Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer

Elizabeth P. Murchison*, Ole B. Schulz-Trieglaff, Zemin Ning, Ludmil B. Alexandrov, Markus J. Bauer, Beiyuan Fu, Matthew Hims, Zhihao Ding, Sergii Ivakhno, Caitlin Stewart, Bee Ling Ng, Wendy Wong, Bronwen Aken, Simon White, Amber Alsop, Jennifer Becq, Graham R. Bignell, R. Keira Cheetham, William Cheng, Thomas R. ConnorAnthony J. Cox, Zhi Ping Feng, Yong Gu, Russell J. Grocock, Simon R. Harris, Irina Khrebtukova, Zoya Kingsbury, Mark Kowarsky, Alexandre Kreiss, Shujun Luo, John Marshall, David J. McBride, Lisa Murray, Anne Maree Pearse, Keiran Raine, Isabelle Rasolonjatovo, Richard Shaw, Philip Tedder, Carolyn Tregidgo, Albert J. Vilella, David C. Wedge, Gregory M. Woods, Niall Gormley, Sean Humphray, Gary Schroth, Geoffrey Smith, Kevin Hall, Stephen M.J. Searle, Nigel P. Carter, Anthony T. Papenfuss, P. Andrew Futreal, Peter J. Campbell, Fengtang Yang, David R. Bentley, Dirk J. Evers, Michael R. Stratton

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    259 Citations (Scopus)

    Abstract

    The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.

    Original languageEnglish
    Pages (from-to)780-791
    Number of pages12
    JournalCell
    Volume148
    Issue number4
    DOIs
    Publication statusPublished - 17 Feb 2012

    Fingerprint

    Dive into the research topics of 'Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer'. Together they form a unique fingerprint.

    Cite this