TY - JOUR
T1 - Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover
AU - Ruan, Yong Ling
AU - Xu, Shou Min
AU - White, Rosemary
AU - Furbank, Robert T.
PY - 2004/12
Y1 - 2004/12
N2 - Cotton fibers are single-celled hairs that elongate to several centimeters long from the seed coat epidermis of the tetraploid species (Gossypium hirsutum and Gossypium barbadense). Thus, cotton fiber is a unique system to study the mechanisms of rapid cell expansion. Previous work has shown a transient closure of plasmodesmata during fiber elongation (Y.-L. Ruan, D.J Llewellyn, R.T. Furbank [2001] Plant Cell 13: 47-60). To examine the importance of this closure in fiber elongation, we compared the duration of the plasmodesmata closure among different cotton genotypes differing in fiber length. Confocal imaging of the membrane-impermeant fluorescent molecule carboxyfluorescein revealed a genotypic difference in the duration of the plasmodesmata closure that positively correlates with fiber length among three tetraploid genotypes and two diploid progenitors. In all cases, the closure occurred at the rapid phase of elongation. Aniline blue staining and immunolocalization studies showed that callose deposition and degradation at the fiber base correlates with the timing of plasmodesmata closure and reopening, respectively. Northern analyses showed that the expression of a fiber-specific β-1,3-glucanase gene, GhGluc1, was undetectable when callose was deposited at the fiber base but became evident at the time of callose degradation. Genotypically, the level of GhGluc1 expression was high in the short fiber genotype and weak in the intermediate and long fiber genotypes. The data provide genotypic and developmental evidence that (1) plasmodesmata closure appears to play an important role in elongating cotton fibers, (2) callose deposition and degradation may be involved in the plasmodesmata closure and reopening, respectively, and (3) the expression of GhGluc1 could play a role in this process by degrading callose, thus opening the plasmodesmata.
AB - Cotton fibers are single-celled hairs that elongate to several centimeters long from the seed coat epidermis of the tetraploid species (Gossypium hirsutum and Gossypium barbadense). Thus, cotton fiber is a unique system to study the mechanisms of rapid cell expansion. Previous work has shown a transient closure of plasmodesmata during fiber elongation (Y.-L. Ruan, D.J Llewellyn, R.T. Furbank [2001] Plant Cell 13: 47-60). To examine the importance of this closure in fiber elongation, we compared the duration of the plasmodesmata closure among different cotton genotypes differing in fiber length. Confocal imaging of the membrane-impermeant fluorescent molecule carboxyfluorescein revealed a genotypic difference in the duration of the plasmodesmata closure that positively correlates with fiber length among three tetraploid genotypes and two diploid progenitors. In all cases, the closure occurred at the rapid phase of elongation. Aniline blue staining and immunolocalization studies showed that callose deposition and degradation at the fiber base correlates with the timing of plasmodesmata closure and reopening, respectively. Northern analyses showed that the expression of a fiber-specific β-1,3-glucanase gene, GhGluc1, was undetectable when callose was deposited at the fiber base but became evident at the time of callose degradation. Genotypically, the level of GhGluc1 expression was high in the short fiber genotype and weak in the intermediate and long fiber genotypes. The data provide genotypic and developmental evidence that (1) plasmodesmata closure appears to play an important role in elongating cotton fibers, (2) callose deposition and degradation may be involved in the plasmodesmata closure and reopening, respectively, and (3) the expression of GhGluc1 could play a role in this process by degrading callose, thus opening the plasmodesmata.
UR - http://www.scopus.com/inward/record.url?scp=16644380199&partnerID=8YFLogxK
U2 - 10.1104/pp.104.051540
DO - 10.1104/pp.104.051540
M3 - Article
SN - 0032-0889
VL - 136
SP - 4104
EP - 4113
JO - Plant Physiology
JF - Plant Physiology
IS - 4
ER -