TY - JOUR
T1 - Geology and genesis of the giant pulang porphyry Cu-Au District, Yunnan, Southwest China
AU - Cao, Kang
AU - Yang, Zhi Ming
AU - Mavrogenes, John
AU - White, Noel C.
AU - Xu, Ji Feng
AU - Li, Yang
AU - Li, Wei Kai
N1 - Publisher Copyright:
© 2019 Society of Economic Geologists, Inc.
PY - 2019
Y1 - 2019
N2 - The giant Pulang porphyry Cu-Au district (446.8 million tonnes at 0.52% Cu and 0.18 g/tonne Au) is in the southern segment of the Yidun arc (Zhongdian arc), part of the Sanjiang Tethyan orogenic belt in southwest China. The district consists of three deposits: South Pulang (~96% of the total ore reserves) and the smaller East and North Pulang deposits. Four intrusive phases host the three Pulang deposits, which are, in order of emplacement, premineralization fne-grained quartz diorite and coarse-grained quartz diorite, intermineralization quartz monzonite, and late-mineralization diorite porphyry. The complex intruded carbonaceous rocks of the Late Triassic Tumugou slates. Zircon U-Pb laser ablation-inductively coupled plasma-mass spectrometry dating shows that intrusive activity occurred at about 216 ± 2 Ma. Hydrothermal alteration of the intrusions at Pulang includes fve main types: K-silicate, epidote-chlorite, chlorite-illite, quartz-illite, and clay alteration. K-silicate alteration, subdivided into early K-feldspar alteration and late biotite alteration (dominant), mainly affected the central quartz monzonite and adjacent coarse-grained quartz diorite and fne-grained quartz diorite. Epidote-chlorite alteration, the most widespread alteration in the district, extends from the deposit core outward and has overprinted K-silicate alteration at South and North Pulang. Late chlorite-illite, quartz-illite, and clay alteration have overprinted preexisting K-silicate and epidotechlorite alteration assemblages and are locally developed in all four intrusive phases. Copper and gold are positively correlated and are mainly (90%) associated with epidote-chlorite alteration and, to a lesser degree, with K-silicate and chlorite-illite alteration. Hypogene pyrrhotite is intergrown with chalcopyrite and mainly occurs in chlorite-illite- and quartz-illite-altered, coarse-grained quartz diorite at East Pulang. Molybdenite Re-Os dating shows that mineralization in the district occurred at 216.54 ± 0.87 to 216.13 ± 0.86 Ma. The sequence of intrusion emplacement, alteration and veining, and sulfde associations at the three deposits suggests that South and North Pulang are two separate porphyry Cu-Au deposits, whereas East Pulang is probably a distal part of South Pulang. The dominance of primary magnetite over ilmenite and the assemblage titanite + magnetite + quartz in the causative quartz monzonite, and the abundant hydrothermal anhydrite veins associated with early K-silicate and main-mineralization epidote-chlorite alteration indicate the oxidized nature of the felsic intrusion and resultant early hydrothermal fluids. The pyrrhotite related to late chlorite-illite and quartz-illite alteration suggests local reduction due to interaction with the carbonaceous Tumugou slates. The atypical association of epidote-chlorite alteration and Cu mineralization at Pulang either is due to fluids from another porphyry deposit nearby overprinting epidote-chlorite alteration onto preexisting copper mineralization and K-silicate alteration at Pulang or is the result of collapse of epidote-chlorite-stable fluids into the K-silicate-altered core during waning hydrothermal activity.
AB - The giant Pulang porphyry Cu-Au district (446.8 million tonnes at 0.52% Cu and 0.18 g/tonne Au) is in the southern segment of the Yidun arc (Zhongdian arc), part of the Sanjiang Tethyan orogenic belt in southwest China. The district consists of three deposits: South Pulang (~96% of the total ore reserves) and the smaller East and North Pulang deposits. Four intrusive phases host the three Pulang deposits, which are, in order of emplacement, premineralization fne-grained quartz diorite and coarse-grained quartz diorite, intermineralization quartz monzonite, and late-mineralization diorite porphyry. The complex intruded carbonaceous rocks of the Late Triassic Tumugou slates. Zircon U-Pb laser ablation-inductively coupled plasma-mass spectrometry dating shows that intrusive activity occurred at about 216 ± 2 Ma. Hydrothermal alteration of the intrusions at Pulang includes fve main types: K-silicate, epidote-chlorite, chlorite-illite, quartz-illite, and clay alteration. K-silicate alteration, subdivided into early K-feldspar alteration and late biotite alteration (dominant), mainly affected the central quartz monzonite and adjacent coarse-grained quartz diorite and fne-grained quartz diorite. Epidote-chlorite alteration, the most widespread alteration in the district, extends from the deposit core outward and has overprinted K-silicate alteration at South and North Pulang. Late chlorite-illite, quartz-illite, and clay alteration have overprinted preexisting K-silicate and epidotechlorite alteration assemblages and are locally developed in all four intrusive phases. Copper and gold are positively correlated and are mainly (90%) associated with epidote-chlorite alteration and, to a lesser degree, with K-silicate and chlorite-illite alteration. Hypogene pyrrhotite is intergrown with chalcopyrite and mainly occurs in chlorite-illite- and quartz-illite-altered, coarse-grained quartz diorite at East Pulang. Molybdenite Re-Os dating shows that mineralization in the district occurred at 216.54 ± 0.87 to 216.13 ± 0.86 Ma. The sequence of intrusion emplacement, alteration and veining, and sulfde associations at the three deposits suggests that South and North Pulang are two separate porphyry Cu-Au deposits, whereas East Pulang is probably a distal part of South Pulang. The dominance of primary magnetite over ilmenite and the assemblage titanite + magnetite + quartz in the causative quartz monzonite, and the abundant hydrothermal anhydrite veins associated with early K-silicate and main-mineralization epidote-chlorite alteration indicate the oxidized nature of the felsic intrusion and resultant early hydrothermal fluids. The pyrrhotite related to late chlorite-illite and quartz-illite alteration suggests local reduction due to interaction with the carbonaceous Tumugou slates. The atypical association of epidote-chlorite alteration and Cu mineralization at Pulang either is due to fluids from another porphyry deposit nearby overprinting epidote-chlorite alteration onto preexisting copper mineralization and K-silicate alteration at Pulang or is the result of collapse of epidote-chlorite-stable fluids into the K-silicate-altered core during waning hydrothermal activity.
UR - http://www.scopus.com/inward/record.url?scp=85065449625&partnerID=8YFLogxK
U2 - 10.5382/econgeo.2019.4631
DO - 10.5382/econgeo.2019.4631
M3 - Article
SN - 0361-0128
VL - 114
SP - 275
EP - 301
JO - Economic Geology
JF - Economic Geology
IS - 2
ER -