Geometrical exploration of a flux-optimised sodium receiver through multi-objective optimisation

Charles Alexis Asselineau, Clothilde Corsi, Joe Coventry, John Pye*

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    4 Citations (Scopus)

    Abstract

    A stochastic multi-objective optimisation method is used to determine receiver geometries with maximum second law efficiency, minimal average temperature and minimal surface area. The method is able to identify a set of Pareto optimal candidates that show advantageous geometrical features, mainly in being able to maximise the intercepted flux within the geometrical boundaries set. Receivers with first law thermal efficiencies ranging from 87% to 91% are also evaluated using the second law of thermodynamics and found to have similar efficiencies of over 60%, highlighting the influence that the geometry can play in the maximisation of the work output of receivers by influencing the distribution of the flux from the concentrator.

    Original languageEnglish
    Title of host publicationSolarPACES 2016
    Subtitle of host publicationInternational Conference on Concentrating Solar Power and Chemical Energy Systems
    PublisherAmerican Institute of Physics Inc.
    ISBN (Electronic)9780735415225
    DOIs
    Publication statusPublished - 27 Jun 2017
    Event22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016 - Abu Dhabi, United Arab Emirates
    Duration: 11 Oct 201614 Oct 2016

    Publication series

    NameAIP Conference Proceedings
    Volume1850
    ISSN (Print)0094-243X
    ISSN (Electronic)1551-7616

    Conference

    Conference22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016
    Country/TerritoryUnited Arab Emirates
    CityAbu Dhabi
    Period11/10/1614/10/16

    Fingerprint

    Dive into the research topics of 'Geometrical exploration of a flux-optimised sodium receiver through multi-objective optimisation'. Together they form a unique fingerprint.

    Cite this