Geometry Aware Constrained Optimization Techniques for Deep Learning

Soumava Kumar Roy, Zakaria Mhammedi, Mehrtash Harandi

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    47 Citations (Scopus)

    Abstract

    In this paper, we generalize the Stochastic Gradient Descent (SGD) and RMSProp algorithms to the setting of Riemannian optimization. SGD is a popular method for large scale optimization. In particular, it is widely used to train the weights of Deep Neural Networks. However, gradients computed using standard SGD can have large variance, which is detrimental for the convergence rate of the algorithm. Other methods such as RMSProp and ADAM address this issue. Nevertheless, these methods cannot be directly applied to constrained optimization problems. In this paper, we extend some popular optimization algorithm to the Riemannian (constrained) setting. We substantiate our proposed extensions with a range of relevant problems in machine learning such as incremental Principal Component Analysis, computating the Riemannian centroids of SPD matrices, and Deep Metric Learning. We achieve competitive results against the state of the art for fine-grained object recognition datasets.

    Original languageEnglish
    Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    PublisherIEEE Computer Society
    Pages4460-4469
    Number of pages10
    ISBN (Electronic)9781538664209
    DOIs
    Publication statusPublished - 14 Dec 2018
    Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
    Duration: 18 Jun 201822 Jun 2018

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    Country/TerritoryUnited States
    CitySalt Lake City
    Period18/06/1822/06/18

    Fingerprint

    Dive into the research topics of 'Geometry Aware Constrained Optimization Techniques for Deep Learning'. Together they form a unique fingerprint.

    Cite this