TY - GEN
T1 - Geometry Aware Constrained Optimization Techniques for Deep Learning
AU - Roy, Soumava Kumar
AU - Mhammedi, Zakaria
AU - Harandi, Mehrtash
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/14
Y1 - 2018/12/14
N2 - In this paper, we generalize the Stochastic Gradient Descent (SGD) and RMSProp algorithms to the setting of Riemannian optimization. SGD is a popular method for large scale optimization. In particular, it is widely used to train the weights of Deep Neural Networks. However, gradients computed using standard SGD can have large variance, which is detrimental for the convergence rate of the algorithm. Other methods such as RMSProp and ADAM address this issue. Nevertheless, these methods cannot be directly applied to constrained optimization problems. In this paper, we extend some popular optimization algorithm to the Riemannian (constrained) setting. We substantiate our proposed extensions with a range of relevant problems in machine learning such as incremental Principal Component Analysis, computating the Riemannian centroids of SPD matrices, and Deep Metric Learning. We achieve competitive results against the state of the art for fine-grained object recognition datasets.
AB - In this paper, we generalize the Stochastic Gradient Descent (SGD) and RMSProp algorithms to the setting of Riemannian optimization. SGD is a popular method for large scale optimization. In particular, it is widely used to train the weights of Deep Neural Networks. However, gradients computed using standard SGD can have large variance, which is detrimental for the convergence rate of the algorithm. Other methods such as RMSProp and ADAM address this issue. Nevertheless, these methods cannot be directly applied to constrained optimization problems. In this paper, we extend some popular optimization algorithm to the Riemannian (constrained) setting. We substantiate our proposed extensions with a range of relevant problems in machine learning such as incremental Principal Component Analysis, computating the Riemannian centroids of SPD matrices, and Deep Metric Learning. We achieve competitive results against the state of the art for fine-grained object recognition datasets.
UR - http://www.scopus.com/inward/record.url?scp=85057173335&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2018.00469
DO - 10.1109/CVPR.2018.00469
M3 - Conference contribution
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 4460
EP - 4469
BT - Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PB - IEEE Computer Society
T2 - 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Y2 - 18 June 2018 through 22 June 2018
ER -