Geometry-Aware Deep Network for Single-Image Novel View Synthesis

Miaomiao Liu, Xuming He, Mathieu Salzmann

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    50 Citations (Scopus)

    Abstract

    This paper tackles the problem of novel view synthesis from a single image. In particular, we target real-world scenes with rich geometric structure, a challenging task due to the large appearance variations of such scenes and the lack of simple 3D models to represent them. Modern, learning-based approaches mostly focus on appearance to synthesize novel views and thus tend to generate predictions that are inconsistent with the underlying scene structure. By contrast, in this paper, we propose to exploit the 3D geometry of the scene to synthesize a novel view. Specifically, we approximate a real-world scene by a fixed number of planes, and learn to predict a set of homographies and their corresponding region masks to transform the input image into a novel view. To this end, we develop a new region-aware geometric transform network that performs these multiple tasks in a common framework. Our results on the outdoor KITTI and the indoor ScanNet datasets demonstrate the effectiveness of our network in generating high-quality synthetic views that respect the scene geometry, thus outperforming the state-of-the-art methods.

    Original languageEnglish
    Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    PublisherIEEE Computer Society
    Pages4616-4624
    Number of pages9
    ISBN (Electronic)9781538664209
    DOIs
    Publication statusPublished - 14 Dec 2018
    Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
    Duration: 18 Jun 201822 Jun 2018

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    Country/TerritoryUnited States
    CitySalt Lake City
    Period18/06/1822/06/18

    Fingerprint

    Dive into the research topics of 'Geometry-Aware Deep Network for Single-Image Novel View Synthesis'. Together they form a unique fingerprint.

    Cite this