TY - JOUR
T1 - Glutathione transferase zeta
T2 - Discovery, polymorphic variants, catalysis, inactivation, and properties of Gstz1-/- mice
AU - Board, Philip G.
AU - Anders, M. W.
PY - 2011/5
Y1 - 2011/5
N2 - Glutathione transferase zeta (GSTZ1) is a member of the GST superfamily of proteins that catalyze the reaction of glutathione with endo- and xenobiotics. GSTZ1-1 was discovered by a bioinformatics strategy that searched the human-expressed sequence-tag database with a sequence that matched a putative plant GST. A sequence that was found was expressed and termed GSTZ1-1. In common with other GSTs, GSTZ1-1 showed some peroxidase activity, but lacked activity with most known GST substrates. GSTZ1-1 was also found to be identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the tyrosine-degradation pathway. Further studies showed that dichloroacetate (DCA) and a range of αhaloalkanoates and αα, αdihaloalkanoates were substrates. A subsequent search of the human-expressed sequence-tag database showed the presence of four polymorphic alleles: 1a, 1b, 1c, and 1d; GSTZ1c was the most common and was designated as the wild-type gene. DCA was shown to be a kcat inactivator of human, rat, and mouse GSTZ1-1; human GSTZ1-1 was more resistant to inactivation than mouse or rat GSTZ1-1. Proteomic analysis showed that hGSTZ1-1 was inactivated when Cys-16 was modified by glutathione and the carbon skeleton of DCA. The polymorphic variants of hGSTZ1-1 differ in their susceptibility to inactivation, with 1a-1a being more resistant to inactivation than the other variants. The targeted deletion of GSTZ1 yielded mice that were not phenotypically distinctive. Phenylalanine proved, however, to be toxic to Gstz1-/- mice, and these mice showed evidence of organ damage and leucopenia.
AB - Glutathione transferase zeta (GSTZ1) is a member of the GST superfamily of proteins that catalyze the reaction of glutathione with endo- and xenobiotics. GSTZ1-1 was discovered by a bioinformatics strategy that searched the human-expressed sequence-tag database with a sequence that matched a putative plant GST. A sequence that was found was expressed and termed GSTZ1-1. In common with other GSTs, GSTZ1-1 showed some peroxidase activity, but lacked activity with most known GST substrates. GSTZ1-1 was also found to be identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the tyrosine-degradation pathway. Further studies showed that dichloroacetate (DCA) and a range of αhaloalkanoates and αα, αdihaloalkanoates were substrates. A subsequent search of the human-expressed sequence-tag database showed the presence of four polymorphic alleles: 1a, 1b, 1c, and 1d; GSTZ1c was the most common and was designated as the wild-type gene. DCA was shown to be a kcat inactivator of human, rat, and mouse GSTZ1-1; human GSTZ1-1 was more resistant to inactivation than mouse or rat GSTZ1-1. Proteomic analysis showed that hGSTZ1-1 was inactivated when Cys-16 was modified by glutathione and the carbon skeleton of DCA. The polymorphic variants of hGSTZ1-1 differ in their susceptibility to inactivation, with 1a-1a being more resistant to inactivation than the other variants. The targeted deletion of GSTZ1 yielded mice that were not phenotypically distinctive. Phenylalanine proved, however, to be toxic to Gstz1-/- mice, and these mice showed evidence of organ damage and leucopenia.
KW - bioinformatics
KW - dichloroacetate
KW - glutathione transferase zeta
KW - glutathione transferases
KW - maleylacetoacetate isomerase
KW - polymorphic variants
KW - targeted gene deletion
UR - http://www.scopus.com/inward/record.url?scp=79954591735&partnerID=8YFLogxK
U2 - 10.3109/03602532.2010.549132
DO - 10.3109/03602532.2010.549132
M3 - Review article
SN - 0360-2532
VL - 43
SP - 215
EP - 225
JO - Drug Metabolism Reviews
JF - Drug Metabolism Reviews
IS - 2
ER -