TY - GEN
T1 - GOGMA
T2 - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
AU - Campbell, Dylan
AU - Petersson, Lars
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/12/9
Y1 - 2016/12/9
N2 - Gaussian mixture alignment is a family of approaches that are frequently used for robustly solving the point-set registration problem. However, since they use local optimisation, they are susceptible to local minima and can only guarantee local optimality. Consequently, their accuracy is strongly dependent on the quality of the initialisation. This paper presents the first globally-optimal solution to the 3D rigid Gaussian mixture alignment problem under the L2 distance between mixtures. The algorithm, named GOGMA, employs a branch-and-bound approach to search the space of 3D rigid motions SE(3), guaranteeing global optimality regardless of the initialisation. The geometry of SE(3) was used to find novel upper and lower bounds for the objective function and local optimisation was integrated into the scheme to accelerate convergence without voiding the optimality guarantee. The evaluation empirically supported the optimality proof and showed that the method performed much more robustly on two challenging datasets than an existing globally-optimal registration solution.
AB - Gaussian mixture alignment is a family of approaches that are frequently used for robustly solving the point-set registration problem. However, since they use local optimisation, they are susceptible to local minima and can only guarantee local optimality. Consequently, their accuracy is strongly dependent on the quality of the initialisation. This paper presents the first globally-optimal solution to the 3D rigid Gaussian mixture alignment problem under the L2 distance between mixtures. The algorithm, named GOGMA, employs a branch-and-bound approach to search the space of 3D rigid motions SE(3), guaranteeing global optimality regardless of the initialisation. The geometry of SE(3) was used to find novel upper and lower bounds for the objective function and local optimisation was integrated into the scheme to accelerate convergence without voiding the optimality guarantee. The evaluation empirically supported the optimality proof and showed that the method performed much more robustly on two challenging datasets than an existing globally-optimal registration solution.
UR - http://www.scopus.com/inward/record.url?scp=84986301954&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2016.613
DO - 10.1109/CVPR.2016.613
M3 - Conference contribution
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 5685
EP - 5694
BT - Proceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PB - IEEE Computer Society
Y2 - 26 June 2016 through 1 July 2016
ER -