TY - JOUR
T1 - Granular compaction and the topology of pore deformation
AU - Saadatfar, Mohammad
AU - Takeuchi, Hiroshi
AU - Hanifpour, Maryam
AU - Robins, Vanessa
AU - Francois, Nicolas
AU - Hiraoka, Yasuaki
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences, 2017.
PY - 2017/6/30
Y1 - 2017/6/30
N2 - The mechanism of crystallisation in highly dissipative materials such as foams or granular materials is still widely unknown. In macroscopic granular materials high levels of energy need to be injected to overcome the natural propensity of these dissipative materials to form amorphous structures [1, 2]. The transition from disordered to ordered packings in such systems triggers a wide range of geometrical, topological and mechanical changes at multi length scales [3]. Formation of cavities and patterns by aggregates of grains and their evolution during this transition requires a complete topological description of the system. Here, crystallisation of three-dimensional packings of frictional spheres is studied at the grain scale with x-ray tomography. Using a novel and powerful topological tool, Persistent Homology, we describe the complete formation process of perfect tetrahedral and octahedral patterns: the two building blocks of FCC and HCP crystalline arrangements. Additionally we present possible and allowable deformations of these components that accurately reproduce the main topological features of the system. These results give new insights into the crystallisation of these highly dissipative materials.
AB - The mechanism of crystallisation in highly dissipative materials such as foams or granular materials is still widely unknown. In macroscopic granular materials high levels of energy need to be injected to overcome the natural propensity of these dissipative materials to form amorphous structures [1, 2]. The transition from disordered to ordered packings in such systems triggers a wide range of geometrical, topological and mechanical changes at multi length scales [3]. Formation of cavities and patterns by aggregates of grains and their evolution during this transition requires a complete topological description of the system. Here, crystallisation of three-dimensional packings of frictional spheres is studied at the grain scale with x-ray tomography. Using a novel and powerful topological tool, Persistent Homology, we describe the complete formation process of perfect tetrahedral and octahedral patterns: the two building blocks of FCC and HCP crystalline arrangements. Additionally we present possible and allowable deformations of these components that accurately reproduce the main topological features of the system. These results give new insights into the crystallisation of these highly dissipative materials.
UR - http://www.scopus.com/inward/record.url?scp=85024091965&partnerID=8YFLogxK
U2 - 10.1051/epjconf/201714016009
DO - 10.1051/epjconf/201714016009
M3 - Conference article
AN - SCOPUS:85024091965
SN - 2101-6275
VL - 140
JO - EPJ Web of Conferences
JF - EPJ Web of Conferences
M1 - 16009
T2 - 8th International Conference on Micromechanics on Granular Media, Powders and Grains 2017
Y2 - 3 July 2017 through 7 July 2017
ER -