TY - JOUR
T1 - Growth and deformation of the Ladakh Batholith, Northwest Himalayas
T2 - Implications for timing of continental collision and origin of calc-alkaline batholiths
AU - Weinberg, Roberto F.
AU - Dunlap, W. J.
PY - 2000/5
Y1 - 2000/5
N2 - The calc-alkaline Ladakh batholith (NW Himalayas) was dated to constrain the timing of continental collision and subsequent deformation. Batholith growth ended when collision disrupted subduction of the Tethyan oceanic lithosphere, and thus the youngest magmatic pulse indirectly dates the collision. Both U-Pb ages on zircons from three samples of the Ladakh batholith and K-Ar from one subvolcanic dike sample were determined. Magmatic activity near Leh (the capital of Ladakh) occurred between 70 and 50 Ma, with the last major magmatic pulse crystallizing at ca. 49.8 ± 0.8 Ma (2σ). This was followed by rapid and generalized cooling to lower greenschist facies temperatures within a few million years, and minor dike intrusion took place at 46 ± 1 Ma. Field observations, the lack of inherited prebatholith zircons, and other isotopic evidence suggest that the batholith is mantle derived with negligible crustal influence, that it evolved through input of fresh magma from the mantle and remelting of previously emplaced mantle magmatic rocks. The sedimentary record indicates that collision in NW Himalaya occurred around 52-50 Ma. If this is so, the magmatic system driven by subduction of Tethys ended immediately on collision. The thermal history of one sample from within the Thanglasgo Shear Zone (TSZ) was determined by Ar-Ar method to constrain timing of batholith internal deformation. This is a wide dextral shear zone within the batholith, parallel to the dextral, N 30°W-striking crustal-scale Karakoram Fault. Internal deformation of the batholith, taken up partly by this shear zone, has caused it to deviate from it regional WNW-ESE trend to parallel the Karakoram Fault. Microstructures and cooling history of a sample from the TSZ indicate that shearing took place before 22 Ma, implying that (1) the history of dextral shearing on NW-striking planes in northern Ladakh started at least 7 m.yr. before the <15 Ma Karakoram Fault, (2) shearing was responsible for deviation of the regional trend of the Ladakh batholith, and (3) dextral shearing occurred within a zone approximately 100 km wide that includes the Ladakh batholith and portions of the younger Karakoram batholith.
AB - The calc-alkaline Ladakh batholith (NW Himalayas) was dated to constrain the timing of continental collision and subsequent deformation. Batholith growth ended when collision disrupted subduction of the Tethyan oceanic lithosphere, and thus the youngest magmatic pulse indirectly dates the collision. Both U-Pb ages on zircons from three samples of the Ladakh batholith and K-Ar from one subvolcanic dike sample were determined. Magmatic activity near Leh (the capital of Ladakh) occurred between 70 and 50 Ma, with the last major magmatic pulse crystallizing at ca. 49.8 ± 0.8 Ma (2σ). This was followed by rapid and generalized cooling to lower greenschist facies temperatures within a few million years, and minor dike intrusion took place at 46 ± 1 Ma. Field observations, the lack of inherited prebatholith zircons, and other isotopic evidence suggest that the batholith is mantle derived with negligible crustal influence, that it evolved through input of fresh magma from the mantle and remelting of previously emplaced mantle magmatic rocks. The sedimentary record indicates that collision in NW Himalaya occurred around 52-50 Ma. If this is so, the magmatic system driven by subduction of Tethys ended immediately on collision. The thermal history of one sample from within the Thanglasgo Shear Zone (TSZ) was determined by Ar-Ar method to constrain timing of batholith internal deformation. This is a wide dextral shear zone within the batholith, parallel to the dextral, N 30°W-striking crustal-scale Karakoram Fault. Internal deformation of the batholith, taken up partly by this shear zone, has caused it to deviate from it regional WNW-ESE trend to parallel the Karakoram Fault. Microstructures and cooling history of a sample from the TSZ indicate that shearing took place before 22 Ma, implying that (1) the history of dextral shearing on NW-striking planes in northern Ladakh started at least 7 m.yr. before the <15 Ma Karakoram Fault, (2) shearing was responsible for deviation of the regional trend of the Ladakh batholith, and (3) dextral shearing occurred within a zone approximately 100 km wide that includes the Ladakh batholith and portions of the younger Karakoram batholith.
UR - http://www.scopus.com/inward/record.url?scp=0033930328&partnerID=8YFLogxK
U2 - 10.1086/314405
DO - 10.1086/314405
M3 - Article
SN - 0022-1376
VL - 108
SP - 303
EP - 320
JO - Journal of Geology
JF - Journal of Geology
IS - 3
ER -