Hallucinating very low-Resolution unaligned and noisy face images by transformative discriminative autoencoders

Xin Yu, Fatih Porikli

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    118 Citations (Scopus)

    Abstract

    Most of the conventional face hallucination methods assume the input image is sufficiently large and aligned, and all require the input image to be noise-free. Their performance degrades drastically if the input image is tiny, unaligned, and contaminated by noise. In this paper, we introduce a novel transformative discriminative autoencoder to 8× super-resolve unaligned noisy and tiny (16×16) low-resolution face images. In contrast to encoder-decoder based autoencoders, our method uses decoder-encoder-decoder networks. We first employ a transformative discriminative decoder network to upsample and denoise simultaneously. Then we use a transformative encoder network to project the intermediate HR faces to aligned and noise-free LR faces. Finally, we use the second decoder to generate hallucinated HR images. Our extensive evaluations on a very large face dataset show that our method achieves superior hallucination results and outperforms the state-of-the-art by a large margin of 1.82 dB PSNR.

    Original languageEnglish
    Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages5367-5375
    Number of pages9
    ISBN (Electronic)9781538604571
    DOIs
    Publication statusPublished - 6 Nov 2017
    Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
    Duration: 21 Jul 201726 Jul 2017

    Publication series

    NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    Volume2017-January

    Conference

    Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    Country/TerritoryUnited States
    CityHonolulu
    Period21/07/1726/07/17

    Fingerprint

    Dive into the research topics of 'Hallucinating very low-Resolution unaligned and noisy face images by transformative discriminative autoencoders'. Together they form a unique fingerprint.

    Cite this