TY - JOUR
T1 - Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds
AU - Auscher, Pascal
AU - McIntosh, Alan
AU - Russ, Emmanuel
PY - 2007/1/15
Y1 - 2007/1/15
N2 - Let M be a complete Riemannian manifold. Assuming that the Riemannian measure is doubling, we define, for all 1 ≤ p ≤ + ∞, a Hardy space Hp (Λ T* M) of differential forms on M, and give two alternative characterizations of H1 (Λ T* M). We also prove, for all 1 ≤ p ≤ + ∞, the Hp (Λ T* M) boundedness of Riesz transforms on M, and show that Hp (Λ T* M) has a bounded holomorphic functional calculus. To cite this article: P. Auscher et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
AB - Let M be a complete Riemannian manifold. Assuming that the Riemannian measure is doubling, we define, for all 1 ≤ p ≤ + ∞, a Hardy space Hp (Λ T* M) of differential forms on M, and give two alternative characterizations of H1 (Λ T* M). We also prove, for all 1 ≤ p ≤ + ∞, the Hp (Λ T* M) boundedness of Riesz transforms on M, and show that Hp (Λ T* M) has a bounded holomorphic functional calculus. To cite this article: P. Auscher et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
UR - http://www.scopus.com/inward/record.url?scp=33846031582&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2006.11.023
DO - 10.1016/j.crma.2006.11.023
M3 - Article
SN - 1631-073X
VL - 344
SP - 103
EP - 108
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 2
ER -