TY - JOUR
T1 - Heritability, selection, and the response to selection in the presence of phenotypic measurement error
T2 - Effects, cures, and the role of repeated measurements
AU - Ponzi, Erica
AU - Keller, Lukas F.
AU - Bonnet, Timothée
AU - Muff, Stefanie
N1 - Publisher Copyright:
© 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
PY - 2018/10
Y1 - 2018/10
N2 - Quantitative genetic analyses require extensive measurements of phenotypic traits, a task that is often not trivial, especially in wild populations. On top of instrumental measurement error, some traits may undergo transient (i.e., nonpersistent) fluctuations that are biologically irrelevant for selection processes. These two sources of variability, which we denote here as measurement error in a broad sense, are possible causes for bias in the estimation of quantitative genetic parameters. We illustrate how in a continuous trait transient effects with a classical measurement error structure may bias estimates of heritability, selection gradients, and the predicted response to selection. We propose strategies to obtain unbiased estimates with the help of repeated measurements taken at an appropriate temporal scale. However, the fact that in quantitative genetic analyses repeated measurements are also used to isolate permanent environmental instead of transient effects requires that the information content of repeated measurements is carefully assessed. To this end, we propose to distinguish “short-term” from “long-term” repeats, where the former capture transient variability and the latter help isolate permanent effects. We show how the inclusion of the corresponding variance components in quantitative genetic models yields unbiased estimates of all quantities of interest, and we illustrate the application of the method to data from a Swiss snow vole population.
AB - Quantitative genetic analyses require extensive measurements of phenotypic traits, a task that is often not trivial, especially in wild populations. On top of instrumental measurement error, some traits may undergo transient (i.e., nonpersistent) fluctuations that are biologically irrelevant for selection processes. These two sources of variability, which we denote here as measurement error in a broad sense, are possible causes for bias in the estimation of quantitative genetic parameters. We illustrate how in a continuous trait transient effects with a classical measurement error structure may bias estimates of heritability, selection gradients, and the predicted response to selection. We propose strategies to obtain unbiased estimates with the help of repeated measurements taken at an appropriate temporal scale. However, the fact that in quantitative genetic analyses repeated measurements are also used to isolate permanent environmental instead of transient effects requires that the information content of repeated measurements is carefully assessed. To this end, we propose to distinguish “short-term” from “long-term” repeats, where the former capture transient variability and the latter help isolate permanent effects. We show how the inclusion of the corresponding variance components in quantitative genetic models yields unbiased estimates of all quantities of interest, and we illustrate the application of the method to data from a Swiss snow vole population.
KW - Animal model
KW - Breeder's equation
KW - Robertson–Price identity
KW - error variance
KW - permanent environmental effects
KW - quantitative genetics
UR - http://www.scopus.com/inward/record.url?scp=85052846139&partnerID=8YFLogxK
U2 - 10.1111/evo.13573
DO - 10.1111/evo.13573
M3 - Article
SN - 0014-3820
VL - 72
SP - 1992
EP - 2004
JO - Evolution
JF - Evolution
IS - 10
ER -