TY - JOUR
T1 - High Dietary Iron in Western Diet-Fed Male Rats Causes Pancreatic Islet Injury and Acute Pancreatitis
AU - Delghingaro-Augusto, Viviane
AU - Hosaka, Ayumi
AU - Estaphan, Suzanne
AU - Richardson, Alice
AU - Dahlstrom, Jane E.
AU - Nolan, Christopher J.
N1 - Publisher Copyright:
© 2023 American Society for Nutrition
PY - 2023/3
Y1 - 2023/3
N2 - Background: High dietary iron has been linked to an increased type 2 diabetes risk. We have previously shown that intrauterine growth restriction (IUGR) and feeding a Western diet (WD) to male Sprague-Dawley rats independently, as well as together, cause pancreatic islet inflammation, fibrosis, and hemosiderosis. Objectives: To investigate whether iron has a role in the pathogenesis of this inflammatory islet injury caused by IUGR and WD intake. Methods: Male Sprague-Dawley offspring of bilateral uterine artery ligated (IUGR) and sham-operated (Sham) dams, fostered to nonoperated dams, were fed a WD [45% sucrose, 19.4% protein and 23% fat (w/w)] containing low iron (LI, 20 mg/kg) or high iron (HI, 500 mg/kg) from weaning. Four groups were studied: Sham-LI, Sham-HI, IUGR-LI, and IUGR-HI. Serial measurements of rat body weight, blood glucose, lipids and insulin, an intraperitoneal glucose tolerance test (age 13 wk), and histological analysis of pancreas and liver (age 14 wk) were recorded. The effects of iron, IUGR, and their interaction, on these measurements have been analyzed. Results: WD with HI compared with LI caused an 11% greater weight gain by age 14 wk (P < 0.001), impaired glucose tolerance [AUC for glucose (G-AUC) 17% higher; P < 0.001), acute pancreatitis (17/18, HI; 6/17, LI; P < 0.001), pancreas-associated fat necrosis and saponification (7/18, HI; 0/17 LI; P < 0.01), and a trend to islet fibrotic injury (7/18, HI; 1/17 LI; P = 0.051). Although pancreatic and hepatic steatosis was evident in almost all WD-fed rats, pancreatic and hepatic iron accumulation was prevalent only in HI-fed rats (P < 0.0001 for both), being only mild in the livers. IUGR, independent of dietary iron, also caused impairment in glucose tolerance (G-AUC: 17% higher; P < 0.05). Conclusions: A postweaning WD containing HI, independent of IUGR, causes acute pancreatitis and islet injury in Sprague-Dawley rats suggesting a role of dietary iron in the development of steatopancreatitis.
AB - Background: High dietary iron has been linked to an increased type 2 diabetes risk. We have previously shown that intrauterine growth restriction (IUGR) and feeding a Western diet (WD) to male Sprague-Dawley rats independently, as well as together, cause pancreatic islet inflammation, fibrosis, and hemosiderosis. Objectives: To investigate whether iron has a role in the pathogenesis of this inflammatory islet injury caused by IUGR and WD intake. Methods: Male Sprague-Dawley offspring of bilateral uterine artery ligated (IUGR) and sham-operated (Sham) dams, fostered to nonoperated dams, were fed a WD [45% sucrose, 19.4% protein and 23% fat (w/w)] containing low iron (LI, 20 mg/kg) or high iron (HI, 500 mg/kg) from weaning. Four groups were studied: Sham-LI, Sham-HI, IUGR-LI, and IUGR-HI. Serial measurements of rat body weight, blood glucose, lipids and insulin, an intraperitoneal glucose tolerance test (age 13 wk), and histological analysis of pancreas and liver (age 14 wk) were recorded. The effects of iron, IUGR, and their interaction, on these measurements have been analyzed. Results: WD with HI compared with LI caused an 11% greater weight gain by age 14 wk (P < 0.001), impaired glucose tolerance [AUC for glucose (G-AUC) 17% higher; P < 0.001), acute pancreatitis (17/18, HI; 6/17, LI; P < 0.001), pancreas-associated fat necrosis and saponification (7/18, HI; 0/17 LI; P < 0.01), and a trend to islet fibrotic injury (7/18, HI; 1/17 LI; P = 0.051). Although pancreatic and hepatic steatosis was evident in almost all WD-fed rats, pancreatic and hepatic iron accumulation was prevalent only in HI-fed rats (P < 0.0001 for both), being only mild in the livers. IUGR, independent of dietary iron, also caused impairment in glucose tolerance (G-AUC: 17% higher; P < 0.05). Conclusions: A postweaning WD containing HI, independent of IUGR, causes acute pancreatitis and islet injury in Sprague-Dawley rats suggesting a role of dietary iron in the development of steatopancreatitis.
KW - Sprague-Dawley rat
KW - dietary iron
KW - intrauterine growth restriction
KW - pancreatic islet
KW - pancreatitis
KW - type 2 diabetes
KW - western diet
UR - http://www.scopus.com/inward/record.url?scp=85150296093&partnerID=8YFLogxK
U2 - 10.1016/j.tjnut.2023.01.009
DO - 10.1016/j.tjnut.2023.01.009
M3 - Article
SN - 0022-3166
VL - 153
SP - 723
EP - 732
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 3
ER -