High-precision star-formation efficiency measurements in nearby clouds

Zipeng Hu*, Mark R. Krumholz, Riwaj Pokhrel, Robert A. Gutermuth

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    On average molecular clouds convert only a small fraction ϵff of their mass into stars per free-fall time, but different star-formation theories make contrasting claims for how this low mean efficiency is achieved. To test these theories, we need precise measurements of both the mean value and the scatter of ϵff, but high-precision measurements have been difficult because they require determining cloud-volume densities, from which we can calculate free-fall times. Until recently, most density estimates treated clouds as uniform spheres, while their real structures are often filamentary and highly non-uniform, yielding systematic errors in ϵff estimates and smearing real cloud-to-cloud variations. We recently developed a theoretical model to reduce this error by using column-density distributions in clouds to produce more accurate volume-density estimates. In this work, we apply this model to recent observations of 12 nearby molecular clouds. Compared to earlier analyses, our method reduces the typical dispersion of ϵff within individual clouds from 0.16 to 0.12 dex, and decreases the median value of ϵff over all clouds from ≈0.02 to ≈0.01. However, we find no significant change in the ≈0.2 dex cloud-to-cloud dispersion of ϵff, suggesting the measured dispersions reflect real structural differences between clouds.

    Original languageEnglish
    Pages (from-to)1431-1438
    Number of pages8
    JournalMonthly Notices of the Royal Astronomical Society
    Volume511
    Issue number1
    DOIs
    Publication statusPublished - 1 Mar 2022

    Fingerprint

    Dive into the research topics of 'High-precision star-formation efficiency measurements in nearby clouds'. Together they form a unique fingerprint.

    Cite this