TY - JOUR
T1 - Hofmeister effects influence bulk nanostructure in a protic ionic liquid
AU - Bourke, Thomas
AU - Gregory, Kasimir P.
AU - Page, Alister J.
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/9
Y1 - 2023/9
N2 - Hypothesis: The origins and behaviour of specific ion effects have been studied in water for more than a century, and more recently in nonaqueous molecular solvents. However, the impacts of specific ion effects on more complex solvents such as nanostructured ionic liquids remains unclear. Here, we hypothesise that the influence of dissolved ions on the hydrogen bonding in the nanostructured ionic liquid propylammonium nitrate (PAN) constitutes a specific ion effect. Experiments: We performed molecular dynamics simulations of bulk PAN and 1–50 mol% PAN-PAX (X = halide anions F−, Cl−, Br−, I−) and PAN-YNO3 (Y = alkali metal cations, Li+, Na+, K+ and Rb+) solutions to investigate how monovalent salts influence the bulk nanostructure in PAN. Findings: The key structural characteristic in PAN is a well-defined hydrogen bond network formed within the polar and non-polar domains in its nanostructure. We show that dissolved alkali metal cations and halide anions have significant and unique influences on the strength of this network. Cations (Li+, Na+, K+ and Rb+) consistently promote hydrogen bonding in the PAN polar domain. Conversely, the influence of halide anions (F−, Cl−, Br−, I−) is ion specific; while F− disrupts PAN hydrogen bonding, I− promotes it. The manipulation of PAN hydrogen bonding therefore constitutes a specific ion effect – i.e. a physicochemical phenomena caused by the presence of dissolved ions, which are dependent on these ions’ identity. We analyse these results using a recently proposed predictor of specific ion effects developed for molecular solvents, and show that it is also capable of rationalising specific ion effects in the more complex solvent environment of an ionic liquid.
AB - Hypothesis: The origins and behaviour of specific ion effects have been studied in water for more than a century, and more recently in nonaqueous molecular solvents. However, the impacts of specific ion effects on more complex solvents such as nanostructured ionic liquids remains unclear. Here, we hypothesise that the influence of dissolved ions on the hydrogen bonding in the nanostructured ionic liquid propylammonium nitrate (PAN) constitutes a specific ion effect. Experiments: We performed molecular dynamics simulations of bulk PAN and 1–50 mol% PAN-PAX (X = halide anions F−, Cl−, Br−, I−) and PAN-YNO3 (Y = alkali metal cations, Li+, Na+, K+ and Rb+) solutions to investigate how monovalent salts influence the bulk nanostructure in PAN. Findings: The key structural characteristic in PAN is a well-defined hydrogen bond network formed within the polar and non-polar domains in its nanostructure. We show that dissolved alkali metal cations and halide anions have significant and unique influences on the strength of this network. Cations (Li+, Na+, K+ and Rb+) consistently promote hydrogen bonding in the PAN polar domain. Conversely, the influence of halide anions (F−, Cl−, Br−, I−) is ion specific; while F− disrupts PAN hydrogen bonding, I− promotes it. The manipulation of PAN hydrogen bonding therefore constitutes a specific ion effect – i.e. a physicochemical phenomena caused by the presence of dissolved ions, which are dependent on these ions’ identity. We analyse these results using a recently proposed predictor of specific ion effects developed for molecular solvents, and show that it is also capable of rationalising specific ion effects in the more complex solvent environment of an ionic liquid.
KW - Hofmeister effect
KW - Hydrogen bond
KW - Ionic liquid
KW - Nanostructure
KW - Specific ion effect
UR - http://www.scopus.com/inward/record.url?scp=85158068228&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2023.04.052
DO - 10.1016/j.jcis.2023.04.052
M3 - Article
SN - 0021-9797
VL - 645
SP - 420
EP - 428
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
ER -