Abstract
Bacterial communities colonize epithelial surfaces of most animals. Several factors, including the innate immune system, mucus composition, and diet, have been identified as determinants of host-associated bacterial communities. Here we show that the early branching metazoan Hydra is able to modify bacterial quorum-sensing signals. We identified a eukaryotic mechanism that enables Hydra to specifically modify long-chain 3-oxo-homoserine lactones into their 3-hydroxy-HSL counterparts. Expression data revealed that Hydra’s main bacterial colonizer, Curvibacter sp., responds differentially to N-(3-hydroxy-dodecanoyl)-L-homoserine lactone (3OHC12-HSL) and N-(3-oxodode-canoyl)-L-homoserine lactone (3OC12-HSL). Investigating the impacts of the different N-acyl-HSLs on host colonization elucidated that 3OHC12-HSL allows and 3OC12-HSL represses host colonization of Curvibacter sp. These results show that an animal manipulates bacterial quorum-sensing signals and that this modification leads to a phenotypic switch in the bacterial colonizers. This mechanism may enable the host to manipulate the gene expression and thereby the behavior of its bacterial colonizers.
Original language | English |
---|---|
Pages (from-to) | E8488-E8497 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 114 |
Issue number | 40 |
DOIs | |
Publication status | Published - 3 Oct 2017 |