TY - JOUR
T1 - Hot lherzolite exhumation, UHT migmatite formation, and acid volcanism driven by Miocene rollback of the Banda Arc, eastern Indonesia
AU - Pownall, Jonathan M.
AU - Hall, Robert
AU - Armstrong, Richard A.
N1 - Publisher Copyright:
© 2017 International Association for Gondwana Research
PY - 2017/11
Y1 - 2017/11
N2 - The northern Banda Arc, eastern Indonesia, exposes upper mantle/lower crustal complexes comprising lherzolites and granulite facies migmatites of the ‘Kobipoto Complex’. Residual garnet–sillimanite granulites, which contain spinel + quartz inclusions within garnet, experienced ultrahigh-temperature (UHT; > 900 °C) conditions at 16 Ma due to heat supplied by lherzolites exhumed during slab rollback in the Banda Arc. Here, we present U–Pb zircon ages and new whole-rock geochemical analyses that document a protracted history of high-T metamorphism, melting, and acid magmatism of a common sedimentary protolith. Detrital zircons from the Kobipoto Complex migmatites, with ages between 3.4 Ga and 216 Ma, show that their protolith was derived from both West Papua and the Archean of Western Australia, and that metamorphism of these rocks on Seram could not have occurred until the Late Triassic. Zircons within the granulites then experienced three subsequent episodes of growth – at 215–173 Ma, 25–20 Ma, and at c. 16 Ma. The population of zircon rims with ages between 215 and 173 Ma document significant metamorphic (± partial melting) events that we attribute to subduction beneath the Bird's Head peninsula and Sula Spur, which occurred until the Banda and Argo continental blocks were rifted from the NW Australian margin of Gondwana in the Late Jurassic (from c. 160 Ma). Late Oligocene-Early Miocene collision between Australia (the Sula Spur) and SE Asia (northern Sulawesi) was then recorded by crystallisation of several 25–20 Ma zircon rims. Thereafter, a large population of c. 16 Ma zircon rims grew during subsequent and extensive Middle Miocene metamorphism and melting of the Kobipoto complex rocks beneath Seram under high- to ultrahigh-temperature (HT–UHT) conditions. Lherzolites located adjacent to the granulite-facies migmatites in central Seram equilibrated at 1280–1300 °C upon their exhumation to 1 GPa (~ 37 km) depth, whereupon they supplied sufficient heat to have metamorphosed adjacent Kobipoto Complex migmatites under UHT conditions at 16 Ma. Calculations suggesting slight (~ 10 vol%) mantle melting are consistent with observations of minor gabbroic intrusions and scarce harzburgites. Subsequent extension during continued slab rollback exhumed both the lherzolites and adjacent granulite-facies migmatites beneath extensional detachment faults in western Seram at 6.0–5.5 Ma, and on Ambon at 3.5 Ma, as recorded by subsequent zircon growth and 40Ar/39Ar ages in these regions. Ambonites, cordierite- and garnet-bearing dacites sourced predominantly from melts generated in the Kobipoto Complex migmatites, were later erupted on Ambon from 3.0 to 1.9 Ma.
AB - The northern Banda Arc, eastern Indonesia, exposes upper mantle/lower crustal complexes comprising lherzolites and granulite facies migmatites of the ‘Kobipoto Complex’. Residual garnet–sillimanite granulites, which contain spinel + quartz inclusions within garnet, experienced ultrahigh-temperature (UHT; > 900 °C) conditions at 16 Ma due to heat supplied by lherzolites exhumed during slab rollback in the Banda Arc. Here, we present U–Pb zircon ages and new whole-rock geochemical analyses that document a protracted history of high-T metamorphism, melting, and acid magmatism of a common sedimentary protolith. Detrital zircons from the Kobipoto Complex migmatites, with ages between 3.4 Ga and 216 Ma, show that their protolith was derived from both West Papua and the Archean of Western Australia, and that metamorphism of these rocks on Seram could not have occurred until the Late Triassic. Zircons within the granulites then experienced three subsequent episodes of growth – at 215–173 Ma, 25–20 Ma, and at c. 16 Ma. The population of zircon rims with ages between 215 and 173 Ma document significant metamorphic (± partial melting) events that we attribute to subduction beneath the Bird's Head peninsula and Sula Spur, which occurred until the Banda and Argo continental blocks were rifted from the NW Australian margin of Gondwana in the Late Jurassic (from c. 160 Ma). Late Oligocene-Early Miocene collision between Australia (the Sula Spur) and SE Asia (northern Sulawesi) was then recorded by crystallisation of several 25–20 Ma zircon rims. Thereafter, a large population of c. 16 Ma zircon rims grew during subsequent and extensive Middle Miocene metamorphism and melting of the Kobipoto complex rocks beneath Seram under high- to ultrahigh-temperature (HT–UHT) conditions. Lherzolites located adjacent to the granulite-facies migmatites in central Seram equilibrated at 1280–1300 °C upon their exhumation to 1 GPa (~ 37 km) depth, whereupon they supplied sufficient heat to have metamorphosed adjacent Kobipoto Complex migmatites under UHT conditions at 16 Ma. Calculations suggesting slight (~ 10 vol%) mantle melting are consistent with observations of minor gabbroic intrusions and scarce harzburgites. Subsequent extension during continued slab rollback exhumed both the lherzolites and adjacent granulite-facies migmatites beneath extensional detachment faults in western Seram at 6.0–5.5 Ma, and on Ambon at 3.5 Ma, as recorded by subsequent zircon growth and 40Ar/39Ar ages in these regions. Ambonites, cordierite- and garnet-bearing dacites sourced predominantly from melts generated in the Kobipoto Complex migmatites, were later erupted on Ambon from 3.0 to 1.9 Ma.
UR - http://www.scopus.com/inward/record.url?scp=85027463956&partnerID=8YFLogxK
U2 - 10.1016/j.gr.2017.07.003
DO - 10.1016/j.gr.2017.07.003
M3 - Article
SN - 1342-937X
VL - 51
SP - 92
EP - 117
JO - Gondwana Research
JF - Gondwana Research
ER -