Hydrogen-atom abstraction from a model amino acid: Dependence on the attacking radical

Ruth I.J. Amos*, Bun Chan, Christopher J. Easton, Leo Radom

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    32 Citations (Scopus)

    Abstract

    We have used computational chemistry to examine the reactivity of a model amino acid toward hydrogen abstraction by HO•, HOO•, and Br•. The trends in the calculated condensed-phase (acetic acid) free energy barriers are in accord with experimental relative reactivities. Our calculations suggest that HO• is likely to be the abstracting species for reactions with hydrogen peroxide. For HO• abstractions, the barriers decrease as the site of reaction becomes more remote from the electron-withdrawing α-substituents, in accord with a diminishing polar deactivating effect. We find that the transition structures for α- and β-abstractions have additional hydrogen-bonding interactions, which lead to lower gas-phase vibrationless electronic barriers at these positions. Such favorable interactions become less important in a polar solvent such as acetic acid, and this leads to larger calculated barriers when the effect of solvation is taken into account. For Br• abstractions, the α-barrier is the smallest while the β-barrier is the largest, with the barrier gradually becoming smaller further along the side chain. We attribute the low barrier for the α-abstraction in this case to the partial reflection of the thermodynamic effect of the captodatively stabilized α-radical product in the more product-like transition structure, while the trend of decreasing barriers in the order β > γ > δ ∼ ε is explained by the diminishing polar deactivating effect. More generally, the favorable influence of thermodynamic effects on the α-abstraction barrier is found to be smaller when the transition structure for hydrogen abstraction is earlier.

    Original languageEnglish
    Pages (from-to)783-788
    Number of pages6
    JournalJournal of Physical Chemistry B
    Volume119
    Issue number3
    DOIs
    Publication statusPublished - 22 Jan 2015

    Fingerprint

    Dive into the research topics of 'Hydrogen-atom abstraction from a model amino acid: Dependence on the attacking radical'. Together they form a unique fingerprint.

    Cite this