Abstract
We characterize and discuss the impact of hydrogenation on the performance of phosphorus-doped polycrystalline silicon (poly-Si) films for passivating contact solar cells. Combining various characterization techniques including transmission electron microscopy, energy-dispersive X-ray spectroscopy, low-temperature photoluminescence spectroscopy, quasi-steady-state photoconductance, and Fourier-transform infrared spectroscopy, we demonstrate that the hydrogen content inside the doped poly-Si layers can be manipulated to improve the quality of the passivating contact structures. After the hydrogenation process of poly-Si layers fabricated under different conditions, the effective lifetime and the implied open circuit voltage are improved for all investigated samples (up to 4.75 ms and 728 mV on 1 ω cm n-type Si substrates). Notably, samples with very low initial passivation qualities show a dramatic improvement from 350 μs to 2.7 ms and from 668 to 722 mV.
Original language | English |
---|---|
Pages (from-to) | 5554-5560 |
Number of pages | 7 |
Journal | ACS applied materials & interfaces |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - 6 Feb 2019 |