Hyperparameter Optimization for Tracking with Continuous Deep Q-Learning

Xingping Dong, Jianbing Shen, Wenguan Wang, Yu Liu, Ling Shao, Fatih Porikli

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    148 Citations (Scopus)

    Abstract

    Hyperparameters are numerical presets whose values are assigned prior to the commencement of the learning process. Selecting appropriate hyperparameters is critical for the accuracy of tracking algorithms, yet it is difficult to determine their optimal values, in particular, adaptive ones for each specific video sequence. Most hyperparameter optimization algorithms depend on searching a generic range and they are imposed blindly on all sequences. Here, we propose a novel hyperparameter optimization method that can find optimal hyperparameters for a given sequence using an action-prediction network leveraged on Continuous Deep Q-Learning. Since the common state-spaces for object tracking tasks are significantly more complex than the ones in traditional control problems, existing Continuous Deep Q-Learning algorithms cannot be directly applied. To overcome this challenge, we introduce an efficient heuristic to accelerate the convergence behavior. We evaluate our method on several tracking benchmarks and demonstrate its superior performance1.

    Original languageEnglish
    Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    PublisherIEEE Computer Society
    Pages518-527
    Number of pages10
    ISBN (Electronic)9781538664209
    DOIs
    Publication statusPublished - 14 Dec 2018
    Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
    Duration: 18 Jun 201822 Jun 2018

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    Country/TerritoryUnited States
    CitySalt Lake City
    Period18/06/1822/06/18

    Fingerprint

    Dive into the research topics of 'Hyperparameter Optimization for Tracking with Continuous Deep Q-Learning'. Together they form a unique fingerprint.

    Cite this