Identification of candidate genes for devil facial tumour disease tumourigenesis

Robyn L. Taylor, Yiru Zhang, Jennifer P. Schöning, Janine E. Deakin*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)

    Abstract

    Devil facial tumour (DFT) disease, a transmissible cancer where the infectious agent is the tumour itself, has caused a dramatic decrease in Tasmanian devil numbers in the wild. The purpose of this study was to take a candidate gene/pathway approach to identify potentially perturbed genes or pathways in DFT. A fusion of chromosome 1 and X is posited as the initial event leading to the development of DFT, with the rearranged chromosome 1 material now stably maintained as the tumour spreads through the population. This hypothesis makes chromosome 1 a prime chromosome on which to search for mutations involved in tumourigenesis. As DFT1 has a Schwann cell origin, we selected genes commonly implicated in tumour pathways in human nerve cancers, or cancers more generally, to determine whether they were rearranged in DFT1, and mapped them using molecular cytogenetics. Many cancer-related genes were rearranged, such as the region containing the tumour suppressor NF2 and a copy gain for ERBB3, a member of the epidermal growth factor receptor family of receptor tyrosine kinases implicated in proliferation and invasion of tumours in humans. Our mapping results have provided strong candidates not previously detected by sequencing DFT1 genomes.

    Original languageEnglish
    Article number8761
    JournalScientific Reports
    Volume7
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2017

    Fingerprint

    Dive into the research topics of 'Identification of candidate genes for devil facial tumour disease tumourigenesis'. Together they form a unique fingerprint.

    Cite this