TY - JOUR
T1 - Identification of ethylene-mediated protein changes during nodulation in Medicago truncatula using proteome analysis
AU - Prayitno, Joko
AU - Imin, Nijat
AU - Rolfe, Barry G.
AU - Mathesius, Ulrike
PY - 2006/11
Y1 - 2006/11
N2 - Ethylene has been hypothesised to be a regulator of root nodule development in legumes, but its molecular mechanisms of action remain unclear. The skl mutant is an ethylene-insensitive legume mutant showing a hypernodulation phenotype when inoculated with its symbiont Sinorhizobium meliloti. We used the skl mutant to study the ethylene-mediated protein changes during nodule development in Medicago truncatula. We compared the root proteome of the skl mutant to its wild-type in response to the ethylene precursor aminocyclopropane carboxylic acid (ACC) to study ethylene-mediated protein expression in root tissues. We then compared the proteome of skl roots to its wild-type after Sinorhizobium inoculation to identify differentially displayed proteins during nodule development at 1 and 3 days post inoculation (dpi). Six proteins (pprg-2, Kunitz proteinase inhibitor, and ACC oxidase isoforms) were down-regulated in skl roots, while three protein spots were up-regulated (trypsin inhibitor, albumin 2, and CPRD49). ACC induced stress-related proteins in wild-type roots, such as pprg-2, ACC oxidase, proteinase inhibitor, ascorbate peroxidase, and heat-shock proteins. However, the expression of stress-related proteins such as pprg-2, Kunitz proteinase inhibitor, and ACC oxidase, was down-regulated in inoculated skl roots. We hypothesize that during early nodule development, the plant induces ethylene-mediated stress responses to limit nodule numbers. When a mutant defective in ethylene signaling, such as skl, is inoculated with rhizobia, the plant stress response is reduced, resulting in increased nodule numbers.
AB - Ethylene has been hypothesised to be a regulator of root nodule development in legumes, but its molecular mechanisms of action remain unclear. The skl mutant is an ethylene-insensitive legume mutant showing a hypernodulation phenotype when inoculated with its symbiont Sinorhizobium meliloti. We used the skl mutant to study the ethylene-mediated protein changes during nodule development in Medicago truncatula. We compared the root proteome of the skl mutant to its wild-type in response to the ethylene precursor aminocyclopropane carboxylic acid (ACC) to study ethylene-mediated protein expression in root tissues. We then compared the proteome of skl roots to its wild-type after Sinorhizobium inoculation to identify differentially displayed proteins during nodule development at 1 and 3 days post inoculation (dpi). Six proteins (pprg-2, Kunitz proteinase inhibitor, and ACC oxidase isoforms) were down-regulated in skl roots, while three protein spots were up-regulated (trypsin inhibitor, albumin 2, and CPRD49). ACC induced stress-related proteins in wild-type roots, such as pprg-2, ACC oxidase, proteinase inhibitor, ascorbate peroxidase, and heat-shock proteins. However, the expression of stress-related proteins such as pprg-2, Kunitz proteinase inhibitor, and ACC oxidase, was down-regulated in inoculated skl roots. We hypothesize that during early nodule development, the plant induces ethylene-mediated stress responses to limit nodule numbers. When a mutant defective in ethylene signaling, such as skl, is inoculated with rhizobia, the plant stress response is reduced, resulting in increased nodule numbers.
KW - Ethylene
KW - Medicago truncatula
KW - Model legume
KW - Nodulation
KW - Protein identification
KW - Sickle mutant
KW - Sinorhizobium meliloti
UR - http://www.scopus.com/inward/record.url?scp=33750992446&partnerID=8YFLogxK
U2 - 10.1021/pr0602646
DO - 10.1021/pr0602646
M3 - Article
SN - 1535-3893
VL - 5
SP - 3084
EP - 3095
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 11
ER -