Immunodetection of four mitotic cyclins and the Cdc2a protein kinase in the maize root: Their distribution in cell development and dedifferentiation

Miriam Mews*, Francis J. Sek, Dieter Volkmann, Peter C.L. John

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)

    Abstract

    Cyclin proteins and cyclin-dependent kinases play a key role in the regulation of cell division. We have therefore studied the relationship of the level of four mitotic cyclin proteins and the Cdc2a kinase protein to cell division in maize root tissue with respect to cessation of division as cells leave the primary meristem region, resumption of division in formation of lateral-root primordia, and induced division following wounding. All four mitotic cyclins and Cdc2a were most abundant in dividing cells. The only examined cell cycle protein which was restricted to dividing tissue was cyclin ZmCycB1;2 (previously ZmIb) and may thus be a limiting factor for cell division. All other cyclin proteins, i.e., ZmCycB1;1 (previously ZmIa), ZmCycA1;1 (previously ZmII), and ZmCycB2;1 (previously ZmIII), and the Cdc2a kinase declined shortly after cells had ceased division. The distance from the root tip at which cells ceased division was tissue-specific and reflected the distance at which decrease of cell cycle proteins was detected. Whereas cyclin ZmCycB1;2 rapidly declined to a hardly detectable level in either nucleus or cytoplasm, in the nuclei of nondividing cells there was persistence of Cdc2a and of cyclins ZmCycB1;1, ZmCycCA1;1, and ZmCycB2;1, indicating that there are plant cyclins which are tightly linked to cell division and others that persist, especially in the nuclei, in nondividing cells. The transition from division to differentiation may thus partly be triggered and enforced by the decrease of the cell cycle proteins and especially the decline of cyclins in the cytoplasm. In the resumption of cell division, both in lateral-root formation and in wound response, high nuclear and low cytoplasmic accumulation of cyclin ZmCycB2;1 was the first visible sign of cell dedifferentiation, implying a role for cyclin ZmCycB2;1 in the G0-G1 phase transition. Next, cytoplasmic accumulation of cyclin ZmCycA1;1, followed by a rearrangement of cortical microtubules, was observed and since both the cyclins ZmCycA1;1 and ZmCycB2;1 were found at places of high tubulin concentration, they may function in the microtubule rearrangement for cell division. When the nuclei of dedifferentiating cells had visibly enlarged, all cyclins and Cdc2a accumulated there, possibly contributing to DNA replication and preparation for mitosis. Later, presumably during G2 phase, cytoplasmic accumulation was observed for Cdc2a at low levels, as observed in G2 phase cells of the primary meristem, and for cyclins ZmCycB1;1 and ZmCycB1;2 accumulation was observed above the levels found in undisturbed meristems, suggesting special contributions to late dedifferentiation processes in both wound-induced and lateral meristems.

    Original languageEnglish
    Pages (from-to)236-249
    Number of pages14
    JournalProtoplasma
    Volume212
    Issue number3-4
    DOIs
    Publication statusPublished - 2000

    Fingerprint

    Dive into the research topics of 'Immunodetection of four mitotic cyclins and the Cdc2a protein kinase in the maize root: Their distribution in cell development and dedifferentiation'. Together they form a unique fingerprint.

    Cite this