Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community

Andreas Heinemeyer*, Karyn P. Ridgway, Everard J. Edwards, David G. Benham, J. Peter W. Young, Alastair H. Fitter

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    137 Citations (Scopus)

    Abstract

    Arbuscular mycorrhizal (AM) fungi have a major influence on the structure, responses and below-ground C allocation of plant communities. Our lack of understanding of the response of AM fungi to factors such as light and temperature is an obstacle to accurate prediction of the impact of global climate change on ecosystem functioning. In order to investigate this response, we divided a grassland site into 24 plots, each either unshaded or partly shaded with soil either unheated or heated by 3°C at 2 cm depth. In both short-term studies in spring and autumn, and in a 1-year-long study, we measured root length colonization (LRC) by AM and non-AM fungi. For selected root samples, DNA sequences were amplified by PCR with fungal-specific primers for part of the small sub-unit (SSU) rRNA gene. In spring, the total LRC increased over 6 weeks from 12% to 25%. Shading significantly reduced AM but increased non-AM fungal colonization, while soil warming had no effect. In the year-long study, colonization by AM fungi peaked in summer, whereas non-AM colonization peaked in autumn, when there was an additive effect of shading and soil warming that reduced AM but increased non-AM fungi. Stepwise regression revealed that light received within the 7 days prior to sampling was the most significant factor in determining AM LRC and that mean temperature was the most important influence on non-AM LRC. Loglinear analysis confirmed that there were no seasonal or treatment effects on the host plant community. Ten AM fungal sequence types were identified that clustered into two families of the Glomales, Glomaceae and Gigasporaceae. Three other sequence types were of non-AM fungi, all Ascomycotina. AM sequence types showed seasonal variation and shading impacts: loglinear regression analysis revealed changes in the AM fungal community with time, and a reduction of one Glomus sp. under shade, which corresponded to a decrease in the abundance of Trifolium repens. We suggest that further research investigating any impacts of climate change on ecosystem functioning must not only incorporate their natural AM fungal communities but should also focus on niche separation and community dynamics of AM fungi.

    Original languageEnglish
    Pages (from-to)52-64
    Number of pages13
    JournalGlobal Change Biology
    Volume10
    Issue number1
    DOIs
    Publication statusPublished - Jan 2004

    Fingerprint

    Dive into the research topics of 'Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community'. Together they form a unique fingerprint.

    Cite this