Abstract
Summary: 1. The Amazon region may experience increasing moisture limitation over this century. Leaf dark respiration (R) is a key component of the Amazon rain forest carbon (C) cycle, but relatively little is known about its sensitivity to drought. 2. Here, we present measurements of R standardized to 25 °C and leaf morphology from different canopy heights over 5 years at a rain forest subject to a large-scale through-fall reduction (TFR) experiment, and nearby, unmodified Control forest, at the Caxiuanã reserve in the eastern Amazon. 3. In all five post-treatment measurement campaigns, mean R at 25 °C was elevated in the TFR forest compared to the Control forest experiencing normal rainfall. After 5 years of the TFR treatment, R per unit leaf area and mass had increased by 65% and 42%, respectively, relative to pre-treatment means. In contrast, leaf area index (L) in the TFR forest was consistently lower than the Control, falling by 23% compared to the pre-treatment mean, largely because of a decline in specific leaf area (S). 4. The consistent and significant effects of the TFR treatment on R, L and S suggest that severe drought events in the Amazon, of the kind that may occur more frequently in future, could cause a substantial increase in canopy carbon dioxide emissions from this ecosystem to the atmosphere.
Original language | English |
---|---|
Pages (from-to) | 524-533 |
Number of pages | 10 |
Journal | Functional Ecology |
Volume | 24 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2010 |
Externally published | Yes |