Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals

Alexandra M. Livernois, Shafagh A. Waters, Janine E. Deakin, Jennifer A. Marshall Graves, Paul D. Waters

    Research output: Contribution to journalArticlepeer-review

    27 Citations (Scopus)

    Abstract

    X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.

    Original languageEnglish
    Article numbere1003635
    JournalPLoS Genetics
    Volume9
    Issue number7
    DOIs
    Publication statusPublished - Jul 2013

    Fingerprint

    Dive into the research topics of 'Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals'. Together they form a unique fingerprint.

    Cite this