TY - JOUR
T1 - Influence of translation efficiency of homologous viral proteins on the endogenous presentation of CD8+ T cell epitopes
AU - Tellam, Judy
AU - Fogg, Mark H.
AU - Rist, Michael
AU - Connolly, Geoff
AU - Tscharke, David
AU - Webb, Natasha
AU - Heslop, Lea
AU - Wang, Fred
AU - Khanna, Rajiv
PY - 2007/3/19
Y1 - 2007/3/19
N2 - A significant proportion of endogenously processed CD8+ T cell epitopes are derived from newly synthesized proteins and rapidly degrading polypeptides (RDPs). It has been hypothesized that the generation of rapidly degrading polypeptides and CD8+ T cell epitopes from these RDP precursors may be influenced by the efficiency of protein translation. Here we address this hypothesis by using the Epstein-Barr virus-encoded nuclear antigen 1 protein (EBNA1), with or without its internal glycine-alanine repeat sequence (EBNA1 and EBNA1ΔGA, respectively), which display distinct differences in translation efficiency. We demonstrate that RDPs constitute a significant proportion of newly synthesized EBNA1 and EBNA1ΔGA and that the levels of RDPs produced by each of these proteins directly correlate with the translation efficiency of either EBNA1 or EBNA1ΔGA. As a consequence, a higher number of major histocompatibility complex-peptide complexes can be detected on the surface of cells expressing EBNA1ΔGA, and these cells are more efficiently recognized by virus-specific cytotoxic T lymphocytes compared to the full-length EBNA1. More importantly, we also demonstrate that the endogenous processing of these CD8+ T cell epitopes is predominantly determined by the rate at which the RDPs are generated rather than the intracellular turnover of these proteins. JEM
AB - A significant proportion of endogenously processed CD8+ T cell epitopes are derived from newly synthesized proteins and rapidly degrading polypeptides (RDPs). It has been hypothesized that the generation of rapidly degrading polypeptides and CD8+ T cell epitopes from these RDP precursors may be influenced by the efficiency of protein translation. Here we address this hypothesis by using the Epstein-Barr virus-encoded nuclear antigen 1 protein (EBNA1), with or without its internal glycine-alanine repeat sequence (EBNA1 and EBNA1ΔGA, respectively), which display distinct differences in translation efficiency. We demonstrate that RDPs constitute a significant proportion of newly synthesized EBNA1 and EBNA1ΔGA and that the levels of RDPs produced by each of these proteins directly correlate with the translation efficiency of either EBNA1 or EBNA1ΔGA. As a consequence, a higher number of major histocompatibility complex-peptide complexes can be detected on the surface of cells expressing EBNA1ΔGA, and these cells are more efficiently recognized by virus-specific cytotoxic T lymphocytes compared to the full-length EBNA1. More importantly, we also demonstrate that the endogenous processing of these CD8+ T cell epitopes is predominantly determined by the rate at which the RDPs are generated rather than the intracellular turnover of these proteins. JEM
UR - http://www.scopus.com/inward/record.url?scp=33947411798&partnerID=8YFLogxK
U2 - 10.1084/jem.20062508
DO - 10.1084/jem.20062508
M3 - Article
SN - 0022-1007
VL - 204
SP - 525
EP - 532
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
IS - 3
ER -