Abstract
Reliable selection of families with increased grain yield is difficult in breeding programs targeting water-limited environments. Carbon isotope discrimination (Δ) is negatively correlated with transpiration efficiency, and low Δ is being used for indirect selection of high wheat yield in rainfed environments. Yet little is known of genetic control and opportunities for improving selection efficiency of Δ in wheat. Half-diallel and generation means mating designs were undertaken to provide estimates of the size and nature of gene action for Δ in a range of wheat genotypes varying for this trait. Significant (P < 0.01) differences were observed for leaf tissue Δ among parents (19.3 to 20.7‰) and F1 progeny (19.4 to 20.9‰) in the half-diallel. General (GCA) and specific combining ability (SCA) effects were significant (P < 0.05), while Baker's GCA/SCA variance ratio of 0.89 was close to unity, indicating largely additive gene effects. GCA effects varied from -0.38 to + 0.34‰ for low and high Δ genotypes 'Quarrion' and 'Gutha', respectively. GCA effects and parental means were strongly correlated (r = 0.95, P < 0.01) while directional dominance and epistasis contributed to small, non-additive gene action for Δ. Smaller Δ in F1 progeny was associated with accumulation of recessive alleles from the low Δ parent. Narrow-sense heritability was high (0.86) on a single-plant basis. Generation means analysis was undertaken on crosses between low Δ genotype Quarrion and two higher Δ genotypes 'Genaro M81' and 'Hartog'. The F1, F2 and midparent means were not statistically (P > 0.05) different, whereas backcrossing significantly changed Δ toward the mean of the recurrent parent. Gene action was largely additive with evidence for additive × additive epistasis in one cross. Narrow-sense heritabilities were moderate in size (0.29 to 0.43) on a single-plant basis. Genetic gain for Δ in wheat should be readily achieved in selection among inbred or partially inbred families during the later stages of population development.
Original language | English |
---|---|
Pages (from-to) | 97-106 |
Number of pages | 10 |
Journal | Euphytica |
Volume | 150 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Jul 2006 |