Abstract
Heterojunction photocatalysts with appropriate band structures and abundant interfacial sites present promising photocatalytic performance. Research in this field has generally been focusing on incorporating dissimilar materials to prepare heterojunctions. Few studies show how to construct intergrown heterojunctions that structurally, the interfacial region is narrowed down to atomic scale, facilitating charge carrier transferring and minimising potentially unfavoured band bending. This work first reports the intergrowth between In(OH)3, InOOH and In2O3 that creates an intergrown InOOH/In2O3 and In(OH)3/InOOH heterojunction structures to greatly enhance photocatalytic effect for highly efficient decomposition of perfluorooctanoic acid. The experimental and theoretical investigation indicate that band structure matching is essential for heterojunction photocatalysts. Fast interfacial charge carrier transferring offers additional charge carriers but does not always occur in the heterojunctions where other effects may play the dominated role in interfacial region. We believe that this comprehensive understanding of intergrown heterojunctions would benefit the design and application of high performance photocatalysts.
Original language | English |
---|---|
Article number | 136355 |
Journal | Chemical Engineering Journal |
Volume | 442 |
DOIs | |
Publication status | Published - 15 Aug 2022 |