Abstract
We report results from the application of our optical potential and relativistic optical potential methods to electron-zinc scattering. The energy range of this study was 0.01-5000 eV, with original results for the summed discrete electronic-state integral excitation cross sections and total ionization cross sections being presented here. When combined with our earlier elastic scattering data [Marinković et al., Phys. Rev. A 99, 062702 (2019)], and the quite limited experimental and theoretical results for those processes from other groups, we critically assemble a recommended integral cross section database for electron-zinc scattering. Electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.1 to 1000 Td, using a multiterm solution of Boltzmann's equation. Some differences with corresponding results from the earlier study of White et al. [J. Phys. D: Appl. Phys. 37, 3185 (2004)] were noted, indicating in part the necessity of having accurate and complete cross section data, over a wide energy regime, when undertaking such transport simulations.
Original language | English |
---|---|
Article number | 013102 |
Journal | Journal of Physical and Chemical Reference Data |
Volume | 49 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Mar 2020 |