Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions.

Daniel J. Fehring, Rosin Illipparampil, Nicola Acevedo, Shapour Jaberzadeh, Paul B. Fitzgerald, Farshad A. Mansouri*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

The effects of transcranial direct-current stimulation (tDCS) on cognitive functions, such as response inhibition, might be mediated through plastic changes within the prefrontal cortex. Previous studies have also confirmed learning-related plasticity in prefrontal neurocircuitry. The susceptibility of prefrontal neurocircuitry for tDCS-induced plastic changes and consequent behavioural modulations might depend on the level of learning in a particular task. Variabilities in the cognitive outcome of tDCS might be related to the interaction of tDCS and task-relevant learning. 73 participants completed the Stop Task before and after tDCS over the dorsolateral prefrontal cortex. Participants had to deliver a speeded response upon the onset of a visual go-cue and inhibit the response when the go-cue was replaced by a stop signal. We measured response time (RT) in Go trials, and stop signal reaction time (SSRT) as an index of inhibition ability. A shorter SSRT indicates a better inhibition ability. Participants received either anodal or sham stimulation in two separate sessions (one week apart). RT was increased and SSRT became shorter from pre-stimulation to post-stimulation testing, indicating within-session learning. Furthermore, compared to the first week of testing, RT was increased and SSRT became shorter in the second week, indicating across-session learning. Within-session learning was significantly higher if anodal stimulation was given in the first week rather than the second week indicating that the behavioural effects of tDCS were dependent on the level of learning. Our findings indicate that tDCS effects on executive functions are dependent on the level of experience (learning) in the cognitive task.

Original languageEnglish
Pages (from-to)148-159
Number of pages12
JournalNeuropsychologia
Volume131
DOIs
Publication statusPublished - Aug 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions.'. Together they form a unique fingerprint.

Cite this