Interpolatory inequalities for first kind convolution volterra integral equations

M. Hegland, R. S. Anderssen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the problem of computing a function u(t) which satisfies the equation k * u = Z0t k(t - s)u(s) ds = f(t), 0 = t < 8, (a) where k(t) is a given kernel and the right-hand side f(t) is only known through some observations which contain observational errors. This problem arises in the study of the rheology of linear viscoelastic materials. It is well known that solving this first kind Volterra integral equation is ill-posed and thus special regularisation techniques are required to solve it in a stable fashion. An important property of many kernels occurring in rheological applications is that they admit solutions h(t) of the interconversion equation Z0t k(t - s)h(s) ds = t, 0 = t < 8. (b) In such situations, the solution of the Volterra equation takes the following form u(t) = dtd22 {Z0t h(t - s)f(s) ds }. (c) Problems where the interconversion equation can be solved explicitly includes n k(t) = 1 + X aj exp(-t/tj) j=1 with the tj > 0. A characterisation of the solutions h(t) for such k(t) will be given below. Even when the solution h(t) to the interconversion equation is known, the problem of computing the solution of (a) as (c) is still ill-posed. A consequence is that regularisation techniques are required to compute u(t). Even then for data containing errors, one can at best get error bounds of the form kue - uk = ?(e) e for some unbounded ?(e). The form of such error bounds based, on interpolatory inequalities, will be discussed for the first kind Volterra equations considered here. Finally, a numerical technique to solve such Volterra equations, when the data is sampled and contains errors, will be discussed. The method is obtained from equation (c) by explicit differentiation, it evaluates u(t) = h0(0)f(t) + Z0t h00(t - s)f(s) ds + h(0) dfdt(t) , (d) where the prime in (h0) denotes the derivative of the function h etc. Instead of having to perform the numerical differentiation of the kernel k in equation (a) and then solve the resulting second kind Volterra integral equation, or the numerical differentiation of equation (c), the solution can be obtained, when h is known, through the direct evaluation of the right hand side of equation (d).

Original languageEnglish
Title of host publicationProceedings - 21st International Congress on Modelling and Simulation, MODSIM 2015
EditorsTony Weber, Malcolm McPhee, Robert Anderssen
PublisherModelling and Simulation Society of Australia and New Zealand Inc (MSSANZ)
Pages119-125
Number of pages7
ISBN (Electronic)9780987214355
Publication statusPublished - 2015
Event21st International Congress on Modelling and Simulation: Partnering with Industry and the Community for Innovation and Impact through Modelling, MODSIM 2015 - Held jointly with the 23rd National Conference of the Australian Society for Operations Research and the DSTO led Defence Operations Research Symposium, DORS 2015 - Broadbeach, Australia
Duration: 29 Nov 20154 Dec 2015

Publication series

NameProceedings - 21st International Congress on Modelling and Simulation, MODSIM 2015

Conference

Conference21st International Congress on Modelling and Simulation: Partnering with Industry and the Community for Innovation and Impact through Modelling, MODSIM 2015 - Held jointly with the 23rd National Conference of the Australian Society for Operations Research and the DSTO led Defence Operations Research Symposium, DORS 2015
Country/TerritoryAustralia
CityBroadbeach
Period29/11/154/12/15

Fingerprint

Dive into the research topics of 'Interpolatory inequalities for first kind convolution volterra integral equations'. Together they form a unique fingerprint.

Cite this