TY - JOUR
T1 - Interstellar extinction curve variations towards the inner Milky Way
T2 - A challenge to observational cosmology
AU - Nataf, David M.
AU - Gonzalez, Oscar A.
AU - Casagrande, Luca
AU - Zasowski, Gail
AU - Wegg, Christopher
AU - Wolf, Christian
AU - Kunder, Andrea
AU - Alonso-Garcia, Javier
AU - Minniti, Dante
AU - Rejkuba, Marina
AU - Saito, Roberto K.
AU - Valenti, Elena
AU - Zoccali, Manuela
AU - Poleski, Radosław
AU - Pietrzyński, Grzegorz
AU - Skowron, Jan
AU - Soszyński, Igor
AU - Szymański, Michał K.
AU - Udalski, Andrzej
AU - Ulaczyk, Krzysztof
AU - Wyrzykowski, Łukasz
N1 - Publisher Copyright:
© 2015 The Authors.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - We investigate interstellar extinction curve variations towards ~4 deg2 of the inner MilkyWay in VIJKs photometry from the OGLE-III (third phase of the Optical Gravitational Lensing Experiment) and VVV (VISTA Variables in the Via Lactea) surveys, with supporting evidence from diffuse interstellar bands and F435W, F625W photometry. We obtain independent measurements towards ~2000 sightlines of AI, E(V - I), E(I - J) and E(J - Ks), with median precision and accuracy of 2 per cent. We find that the variations in the extinction ratios AI/E(V - I), E(I - J)/E(V - I) and E(J - Ks)/E(V - I) are large (exceeding 20 per cent), significant and positively correlated, as expected. However, both the mean values and the trends in these extinction ratios are drastically shifted from the predictions of Cardelli and Fitzpatrick, regardless of how RV is varied. Furthermore, we demonstrate that variations in the shape of the extinction curve have at least two degrees of freedom, and not one (e.g. RV), which we confirm with a principal component analysis. We derive a median value of AV/AKs = 13.44, which is ~60 per cent higher than the 'standard' value. We show that theWesenheit magnitude WI = I - 1.61(I - J) is relatively impervious to extinction curve variations. Given that these extinction curves are linchpins of observational cosmology, and that it is generally assumed that RV variations correctly capture variations in the extinction curve, we argue that systematic errors in the distance ladder from studies of Type Ia supernovae and Cepheids may have been underestimated. Moreover, the reddening maps from the Planck experiment are shown to systematically overestimate dust extinction by ~100 per cent and lack sensitivity to extinction curve variations.
AB - We investigate interstellar extinction curve variations towards ~4 deg2 of the inner MilkyWay in VIJKs photometry from the OGLE-III (third phase of the Optical Gravitational Lensing Experiment) and VVV (VISTA Variables in the Via Lactea) surveys, with supporting evidence from diffuse interstellar bands and F435W, F625W photometry. We obtain independent measurements towards ~2000 sightlines of AI, E(V - I), E(I - J) and E(J - Ks), with median precision and accuracy of 2 per cent. We find that the variations in the extinction ratios AI/E(V - I), E(I - J)/E(V - I) and E(J - Ks)/E(V - I) are large (exceeding 20 per cent), significant and positively correlated, as expected. However, both the mean values and the trends in these extinction ratios are drastically shifted from the predictions of Cardelli and Fitzpatrick, regardless of how RV is varied. Furthermore, we demonstrate that variations in the shape of the extinction curve have at least two degrees of freedom, and not one (e.g. RV), which we confirm with a principal component analysis. We derive a median value of AV/AKs = 13.44, which is ~60 per cent higher than the 'standard' value. We show that theWesenheit magnitude WI = I - 1.61(I - J) is relatively impervious to extinction curve variations. Given that these extinction curves are linchpins of observational cosmology, and that it is generally assumed that RV variations correctly capture variations in the extinction curve, we argue that systematic errors in the distance ladder from studies of Type Ia supernovae and Cepheids may have been underestimated. Moreover, the reddening maps from the Planck experiment are shown to systematically overestimate dust extinction by ~100 per cent and lack sensitivity to extinction curve variations.
KW - Dust, extinction
KW - ISM: lines and bands
UR - http://www.scopus.com/inward/record.url?scp=84964453194&partnerID=8YFLogxK
U2 - 10.1093/mnras/stv2843
DO - 10.1093/mnras/stv2843
M3 - Article
SN - 0035-8711
VL - 456
SP - 2692
EP - 2706
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -