TY - JOUR
T1 - Investigating the Zonal Response of Spatiotemporal Dynamics of Australian Grasslands to Ongoing Climate Change
AU - Bai, Jingai
AU - Xu, Tingbao
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/1
Y1 - 2025/1
N2 - Grasslands are key components of land ecosystems, providing valuable ecosystem services and contributing to local carbon sequestration. Australian grasslands, covering approximately 70% of the continent, are vital for agriculture, pasture, and ecosystem services. Ongoing climate change introduces considerable uncertainties about the dynamic responses of different types of grasslands to changes in regional climate and its variation. This study, bringing together high-resolution meteorological data, calibrated long-term satellite NDVI data, and NPP and statistical models, investigated the spatiotemporal variability of NDVI and NPP and their predominant drivers (temperature and soil water content) across Australia’s grassland zones from 1992 to 2021. Results showed a slight, non-significant NDVI increase, primarily driven by improved vegetation in northern savannah grasslands (SGs). Areal average annual NPP values fluctuated annually but with a levelled trend over time, illustrating grassland resilience. NDVI and NPP measures aligned spatially, with values decreasing from the coastal to the inland regions and north to south. Most of the SGs experienced an increase in NDVI and NPP, boosted by abundant soil moisture and warm weather, which promoted vegetation growth and sustained a stable growing biomass in this zone. The increased NDVI and NPP in northern open grasslands (OGs) were linked to wetter conditions, while their decreases in western desert grasslands (DGs) were ascribed to warming and drier weather. Soil water availability was the dominant driver of grassland growth, with NDVI being positively correlated with soil water content but being negatively correlated with temperature across most grasslands. Projections under the SSP126 and SSP370 scenarios using ACCESS-ESM1.5 showed slight NPP increases by 2050 under warmer and wetter conditions, though western and southern grasslands may see declines in vegetation coverage and carbon storage. This study provides insights into the responses of Australian grasslands to climate variability. The results will help to underpin the design of sustainable grassland management strategies and practices under a changing climate for Australia.
AB - Grasslands are key components of land ecosystems, providing valuable ecosystem services and contributing to local carbon sequestration. Australian grasslands, covering approximately 70% of the continent, are vital for agriculture, pasture, and ecosystem services. Ongoing climate change introduces considerable uncertainties about the dynamic responses of different types of grasslands to changes in regional climate and its variation. This study, bringing together high-resolution meteorological data, calibrated long-term satellite NDVI data, and NPP and statistical models, investigated the spatiotemporal variability of NDVI and NPP and their predominant drivers (temperature and soil water content) across Australia’s grassland zones from 1992 to 2021. Results showed a slight, non-significant NDVI increase, primarily driven by improved vegetation in northern savannah grasslands (SGs). Areal average annual NPP values fluctuated annually but with a levelled trend over time, illustrating grassland resilience. NDVI and NPP measures aligned spatially, with values decreasing from the coastal to the inland regions and north to south. Most of the SGs experienced an increase in NDVI and NPP, boosted by abundant soil moisture and warm weather, which promoted vegetation growth and sustained a stable growing biomass in this zone. The increased NDVI and NPP in northern open grasslands (OGs) were linked to wetter conditions, while their decreases in western desert grasslands (DGs) were ascribed to warming and drier weather. Soil water availability was the dominant driver of grassland growth, with NDVI being positively correlated with soil water content but being negatively correlated with temperature across most grasslands. Projections under the SSP126 and SSP370 scenarios using ACCESS-ESM1.5 showed slight NPP increases by 2050 under warmer and wetter conditions, though western and southern grasslands may see declines in vegetation coverage and carbon storage. This study provides insights into the responses of Australian grasslands to climate variability. The results will help to underpin the design of sustainable grassland management strategies and practices under a changing climate for Australia.
KW - Australian grasslands
KW - climate change
KW - grassland ecosystem
KW - spatiotemporal distribution pattern
KW - vegetation dynamics
UR - http://www.scopus.com/inward/record.url?scp=85219184696&partnerID=8YFLogxK
U2 - 10.3390/land14020296
DO - 10.3390/land14020296
M3 - Article
AN - SCOPUS:85219184696
SN - 2073-445X
VL - 14
JO - Land
JF - Land
IS - 2
M1 - 296
ER -