Abstract
A new spectrometer is described for measuring the momentum distributions of scattered electrons arising from electron-atom and electron-molecule ionization experiments. It incorporates and builds on elements from a number of previous designs, namely, a source of polarized electrons and two high-efficiency electrostatic electron energy analyzers. The analyzers each comprise a seven-element retarding-electrostatic lens system, four toroidal-sector electrodes, and a fast position-and-time-sensitive two-dimensional delay-line detector. Results are presented for the electron-impact-induced ionization of helium and the elastic scattering of electrons from argon and helium which demonstrate that high levels of momentum resolution and data-collection efficiency are achieved. Problematic aspects regarding variations in collection efficiency over the accepted momentum phase space are addressed and a methodology for their correction presented. Principles behind the present design and previous designs for electrostatic analyzers based around electrodes of toroidal-sector geometry are discussed and a framework is provided for optimizing future devices.
Original language | English |
---|---|
Article number | 111301 |
Journal | Review of Scientific Instruments |
Volume | 78 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2007 |