TY - JOUR
T1 - Ionic current changes associated with the gravity-induced bending response in roots of Zea mays L.
AU - Collings, David A.
AU - White, Rosemary G.
AU - Overall, Robyn L.
PY - 1992/11
Y1 - 1992/11
N2 - A vibrating probe was used to measure the changes in ionic currents around gravistimulated roots of Zed mays L. in an effort to determine whether these currents are involved in stimulus transduction from the root cap to the elongation zone. We did not observe a migration of the previously reported auxin-insensitive current efflux associated with gravity sensing (T. Björkman, A.C. Leopold [1987] Plant Physiol 84: 841-846) back from the root cap. Instead, beginning 10 to 15 min after gravistimulation, an asymmetry in current developed simultaneously along the root around the meristem and apical regions of the elongation zone. This asymmetry comprised a proton efflux from the upper surface, which was superimposed on the symmetrical pattern around the vertical root. The gravity-induced proton efflux was inhibited by the application of the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, whereas the calcium channel blocker, lanthanum, had little effect. Because the onset of the gravity-induced current asymmetry coincided both spatially and temporally with the onset of the differential growth response, we suggest that this current efflux may result from auxin-requiring acid-growth phenomena in the upper root tissue. The implications of this simultaneous onset of both proton efflux and elongation for theories about gravity stimulus transduction are discussed.
AB - A vibrating probe was used to measure the changes in ionic currents around gravistimulated roots of Zed mays L. in an effort to determine whether these currents are involved in stimulus transduction from the root cap to the elongation zone. We did not observe a migration of the previously reported auxin-insensitive current efflux associated with gravity sensing (T. Björkman, A.C. Leopold [1987] Plant Physiol 84: 841-846) back from the root cap. Instead, beginning 10 to 15 min after gravistimulation, an asymmetry in current developed simultaneously along the root around the meristem and apical regions of the elongation zone. This asymmetry comprised a proton efflux from the upper surface, which was superimposed on the symmetrical pattern around the vertical root. The gravity-induced proton efflux was inhibited by the application of the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, whereas the calcium channel blocker, lanthanum, had little effect. Because the onset of the gravity-induced current asymmetry coincided both spatially and temporally with the onset of the differential growth response, we suggest that this current efflux may result from auxin-requiring acid-growth phenomena in the upper root tissue. The implications of this simultaneous onset of both proton efflux and elongation for theories about gravity stimulus transduction are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0001301050&partnerID=8YFLogxK
U2 - 10.1104/pp.100.3.1417
DO - 10.1104/pp.100.3.1417
M3 - Article
AN - SCOPUS:0001301050
SN - 0032-0889
VL - 100
SP - 1417
EP - 1426
JO - Plant Physiology
JF - Plant Physiology
IS - 3
ER -