Abstract
In this paper, we study the Ricci flow on higher dimensional compact manifolds. We prove that nonnegative isotropic curvature is preserved by the Ricci flow in dimensions greater than or equal to four. In order to do so, we introduce a new technique to prove that curvature functions defined on the orthonormal frame bundle are preserved by the Ricci flow. At a minimum of such a function, we compute the first and second derivatives in the frame bundle. Using an algebraic construction, we can use these expressions to show that the nonlinearity is positive at a minimum. Finally, using the maximum principle, we can show that the Ricci flow preserves the cone of curvature operators with nonnegative isotropic curvature.
Original language | English |
---|---|
Pages (from-to) | 536-558 |
Number of pages | 23 |
Journal | International Mathematics Research Notices |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 2010 |