Joint registration and representation learning for unconstrained face identification

Munawar Hayat, Salman H. Khan, Naoufel Werghi, Roland Goecke

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    32 Citations (Scopus)

    Abstract

    Recent advances in deep learning have resulted in human-level performances on popular unconstrained face datasets including Labeled Faces in the Wild and YouTube Faces. To further advance research, IJB-A benchmark was recently introduced with more challenges especially in the form of extreme head poses. Registration of such faces is quite demanding and often requires laborious procedures like facial landmark localization. In this paper, we propose a Convolutional Neural Networks based data-driven approach which learns to simultaneously register and represent faces. We validate the proposed scheme on template based unconstrained face identification. Here, a template contains multiple media in the form of images and video frames. Unlike existing methods which synthesize all template media information at feature level, we propose to keep the template media intact. Instead, we represent gallery templates by their trained one-vs-rest discriminative models and then employ a Bayesian strategy which optimally fuses decisions of all medias in a query template. We demonstrate the efficacy of the proposed scheme on IJB-A, YouTube Celebrities and COX datasets where our approach achieves significant relative performance boosts of 3.6%, 21.6% and 12.8% respectively.

    Original languageEnglish
    Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages1551-1560
    Number of pages10
    ISBN (Electronic)9781538604571
    DOIs
    Publication statusPublished - 6 Nov 2017
    Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
    Duration: 21 Jul 201726 Jul 2017

    Publication series

    NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    Volume2017-January

    Conference

    Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
    Country/TerritoryUnited States
    CityHonolulu
    Period21/07/1726/07/17

    Fingerprint

    Dive into the research topics of 'Joint registration and representation learning for unconstrained face identification'. Together they form a unique fingerprint.

    Cite this