Kähler-Ricci solitons on toric manifolds with positive first Chern class

Xu Jia Wang*, Xiaohua Zhu

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    214 Citations (Scopus)

    Abstract

    In this paper we prove there exists a Kähler - Ricci soliton, unique up to holomorphic automorphisms, on any toric Kähler manifold with positive first Chern class, and the Kähler - Ricci soliton is a Kähler - Einstein metric if and only if the Futaki invariant vanishes.

    Original languageEnglish
    Pages (from-to)87-103
    Number of pages17
    JournalAdvances in Mathematics
    Volume188
    Issue number1
    DOIs
    Publication statusPublished - 20 Oct 2004

    Fingerprint

    Dive into the research topics of 'Kähler-Ricci solitons on toric manifolds with positive first Chern class'. Together they form a unique fingerprint.

    Cite this