KYDISC: Galaxy Morphology, Quenching, and Mergers in the Cluster Environment

Sree Oh, Keunho Kim, Joon Hyeop Lee, Yun Kyeong Sheen, Minjin Kim, Chang H. Ree, Luis C. Ho, Jaemann Kyeong, Eon Chang Sung, Byeong Gon Park, Sukyoung K. Yi

    Research output: Contribution to journalReview articlepeer-review

    29 Citations (Scopus)

    Abstract

    We present the KASI-Yonsei Deep Imaging Survey of Clusters targeting 14 clusters at 0.015 ≲ z ≲ 0.144 using the Inamori Magellan Areal Camera and Spectrograph on the 6.5 m Magellan Baade telescope and the MegaCam on the 3.6 m Canada-France-Hawaii Telescope. We provide a catalog of cluster galaxies that lists magnitudes, redshifts, morphologies, bulge-to-total ratios, and local density. Based on the 1409 spectroscopically confirmed cluster galaxies brighter than -19.8 in the r band, we study galaxy morphology, color, and visual features generated by galaxy mergers. We see a clear trend between morphological content and cluster velocity dispersion, which was not presented by previous studies using local clusters. Passive spirals are preferentially found in a highly dense region (i.e., cluster center), indicating that they have gone through environmental quenching. In deep images (μ r′ ∼ 27 ), 20% of our sample shows signatures of recent mergers, which is not expected from theoretical predictions and a low frequency of ongoing mergers in our sample (∼4%). Such a high fraction of recent mergers in the cluster environment supports a scenario that the merger events that made the features have preceded the galaxy accretion into the cluster environment. We conclude that mergers affect a cluster population mainly through the preprocessing of recently accreted galaxies.

    Original languageEnglish
    Article number14
    JournalAstrophysical Journal, Supplement Series
    Volume237
    Issue number1
    DOIs
    Publication statusPublished - Jul 2018

    Fingerprint

    Dive into the research topics of 'KYDISC: Galaxy Morphology, Quenching, and Mergers in the Cluster Environment'. Together they form a unique fingerprint.

    Cite this