Abstract
An experimental investigation of the behaviour of laser-induced ignition in a hypersonic air-hydrogen flow is presented. A compression-ramp model with port-hole injection, fuelled with hydrogen gas, is used in the study. The experiments were conducted in the T-ADFA shock tunnel using a flow condition with a specific total enthalpy of 2.5 MJ/kg and a freestream velocity of 2 km/s. This study is the first comprehensive laser spark study in a hypersonic flow and demonstrates that laser-induced ignition at the fuel-injection site can be effective in terms of hydroxyl production. A semi-empirical method to estimate the conditions in the laser-heated gas kernel is presented in the paper. This method uses blast-wave theory together with an expansion-wave model to estimate the laser-heated gas conditions. The spatially averaged conditions found with this approach are matched to enthalpy curves generated using a standard chemical equilibrium code (NASA CEA). This allows us to account for differences that are introduced due to the idealised description of the blast wave, the isentropic expansion wave as well as thermochemical effects.
Original language | English |
---|---|
Pages (from-to) | 439-452 |
Number of pages | 14 |
Journal | Shock Waves |
Volume | 23 |
Issue number | 5 |
DOIs | |
Publication status | Published - Sept 2013 |
Externally published | Yes |