TY - JOUR
T1 - Leader Tracking of Euler-Lagrange Agents on Directed Switching Networks Using a Model-Independent Algorithm
AU - Ye, Mengbin
AU - Anderson, Brian D.O.
AU - Yu, Changbin
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2019/6
Y1 - 2019/6
N2 - In this paper, we propose a discontinuous distributed model-independent algorithm for a directed network of Euler-Lagrange agents to track the trajectory of a leader with nonconstant velocity. We initially study a fixed network and show that the leader tracking objective is achieved semiglobally exponentially fast if the graph contains a directed spanning tree. By model independent, we mean that each agent executes its algorithm with no knowledge of the parameter values of any agent's dynamics. Certain bounds on the agent dynamics (including any disturbances) and network topology information are used to design the control gain. This fact, combined with the algorithm's model independence, results in robustness to disturbances and modeling uncertainties. Next, a continuous approximation of the algorithm is proposed, which achieves practical tracking with an adjustable tracking error. Last, we show that the algorithm is stable for networks that switch with an explicitly computable dwell time. Numerical simulations are given to show the algorithm's effectiveness.
AB - In this paper, we propose a discontinuous distributed model-independent algorithm for a directed network of Euler-Lagrange agents to track the trajectory of a leader with nonconstant velocity. We initially study a fixed network and show that the leader tracking objective is achieved semiglobally exponentially fast if the graph contains a directed spanning tree. By model independent, we mean that each agent executes its algorithm with no knowledge of the parameter values of any agent's dynamics. Certain bounds on the agent dynamics (including any disturbances) and network topology information are used to design the control gain. This fact, combined with the algorithm's model independence, results in robustness to disturbances and modeling uncertainties. Next, a continuous approximation of the algorithm is proposed, which achieves practical tracking with an adjustable tracking error. Last, we show that the algorithm is stable for networks that switch with an explicitly computable dwell time. Numerical simulations are given to show the algorithm's effectiveness.
KW - Directed graph
KW - Euler-Lagrange agent
KW - distributed algorithm
KW - model independent
KW - switching network
KW - tracking
UR - http://www.scopus.com/inward/record.url?scp=85049934909&partnerID=8YFLogxK
U2 - 10.1109/TCNS.2018.2856298
DO - 10.1109/TCNS.2018.2856298
M3 - Article
SN - 2325-5870
VL - 6
SP - 561
EP - 571
JO - IEEE Transactions on Control of Network Systems
JF - IEEE Transactions on Control of Network Systems
IS - 2
M1 - 8411179
ER -