TY - JOUR
T1 - Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants II
T2 - Observational evidence and global implications
AU - Kahmen, Ansgar
AU - Hoffmann, Bernd
AU - Schefuß, Enno
AU - Arndt, Stefan K.
AU - Cernusak, Lucas A.
AU - West, Jason B.
AU - Sachse, Dirk
PY - 2013/6/5
Y1 - 2013/6/5
N2 - Leaf wax n-alkanes are long-chain hydrocarbons that can persist in sedimentary records over geological timescales. Since their hydrogen isotopic composition (expressed as a δD value) can be correlated to the δD values of precipitation, leaf wax n-alkane δD values have been advocated as new and powerful proxies for paleohydrological research. The exact type of hydrological information that is recorded in the δD values of leaf wax n-alkanes remains, however, unclear. In a companion paper we provide experimental evidence showing that the δD values of leaf wax n-alkanes of angiosperm plants grown under controlled environmental conditions not only reflect δD values of precipitation - as has often been assumed - but that evaporative deuterium (D)-enrichment of leaf water has an additional critical effect on their δD values. Here we present a detailed observational study that illustrates that evaporative D-enrichment of leaf water also affects the δD values of leaf wax n-alkanes in plants from natural ecosystems along a 1500. km climate gradient in Northern Australia. Based on global simulations of leaf water D-enrichment we show that the effects of evaporative D-enrichment of leaf water on leaf wax n-alkane δD values is relevant in all biomes but that it is particularly important in arid environments. Given the combined influence of precipitation δD values and leaf water D-enrichment we argue that leaf wax n-alkane δD values contain an integrated signal that can provide general hydrological information, e.g. on the aridity of a catchment area. We also suggest that more specific hydrological information and even plant physiological information can be obtained from leaf wax n-alkanes if additional indicators are available to constrain the plant- and precipitation-derived influences on their δD values. As such, our findings have important implications for the interpretation of leaf wax n-alkane δD values from paleohydrological records. In addition, our investigations open the door to employ δD values of leaf wax n-alkanes as new ecohydrological proxies in contemporary plant and ecosystem sciences.
AB - Leaf wax n-alkanes are long-chain hydrocarbons that can persist in sedimentary records over geological timescales. Since their hydrogen isotopic composition (expressed as a δD value) can be correlated to the δD values of precipitation, leaf wax n-alkane δD values have been advocated as new and powerful proxies for paleohydrological research. The exact type of hydrological information that is recorded in the δD values of leaf wax n-alkanes remains, however, unclear. In a companion paper we provide experimental evidence showing that the δD values of leaf wax n-alkanes of angiosperm plants grown under controlled environmental conditions not only reflect δD values of precipitation - as has often been assumed - but that evaporative deuterium (D)-enrichment of leaf water has an additional critical effect on their δD values. Here we present a detailed observational study that illustrates that evaporative D-enrichment of leaf water also affects the δD values of leaf wax n-alkanes in plants from natural ecosystems along a 1500. km climate gradient in Northern Australia. Based on global simulations of leaf water D-enrichment we show that the effects of evaporative D-enrichment of leaf water on leaf wax n-alkane δD values is relevant in all biomes but that it is particularly important in arid environments. Given the combined influence of precipitation δD values and leaf water D-enrichment we argue that leaf wax n-alkane δD values contain an integrated signal that can provide general hydrological information, e.g. on the aridity of a catchment area. We also suggest that more specific hydrological information and even plant physiological information can be obtained from leaf wax n-alkanes if additional indicators are available to constrain the plant- and precipitation-derived influences on their δD values. As such, our findings have important implications for the interpretation of leaf wax n-alkane δD values from paleohydrological records. In addition, our investigations open the door to employ δD values of leaf wax n-alkanes as new ecohydrological proxies in contemporary plant and ecosystem sciences.
UR - http://www.scopus.com/inward/record.url?scp=84876711030&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2012.09.004
DO - 10.1016/j.gca.2012.09.004
M3 - Article
SN - 0016-7037
VL - 111
SP - 50
EP - 63
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -